justin-zhang.com

PSO 9

Connected Components, Dijkstra, toposort

Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?
2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

Euler tour if and only if
in-degree(v) = out-degree(v), Vv € V.

Question 2
(Dijkstra and topological sorting)

1. List the order that edges are added if we run Dijkstra’s algorithm starting at node A in the following
graph.

O 13 \ &% 16)
© o) ——® (®)

Lets start
with this
one

Dijkstra

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V->Z

let prev:V >V o For a vertex s, finds shortest paths to all vertices. At
let Q@ be an empty priority queue
each step..

dist[s] « @
for each v€V do

if v +s then - Consider current closest vertex u (priority queue)
dist[v] « o

— - Greedily update path lengths to u’s neighbors

prev[v] « -1 - Mark as visited
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

1 @ 0.5 B
hd ®) A B CDE F G H

2 s 4 10()]5}000000000000000

lreg -~ — —1 - 4 -

@ 16 @

Q
(0,A)

(%,8)
(e, C)
(%, D)
(@ E)
(e0,F)
(. 6)

@ 0.5 @
5 5 10
(af—(®)

> oo

16

> oo

13

A Bc¢c D E F & H

dk 0 3.5 9 1352 €5 3
pev . H -1 A B A F F

A Bc¢c D E F & H

dk 0 3.5 9 1352 €5 3
pev . H -1 A B A F F

A B¢ D E F 6 |
dk 0 3.5225 9)35 2 85 3
bev 1 H G A B A F F

A B¢ D E F 6 |
dk 0 3.5225 9)35 2 85 3
bev 1 H G A B A F F

A B¢ D E F 6 |
dsk © 3.522 9 1352 €5 3
Prev I M p A B A F F

Q

(135, E)
(2 ., ¢)

A B¢ D E F 6 |
dsk © 3.522 9 1352 €5 3
Prev I M ‘D A B A F F

Q

(135, E)
(2 . ¢)

/N 0.5
e pt) Al Blc|PDIEIF|E | H

-

4 dgk © 3.522 9 13352 65 3
Prey | “,p A b A F F

Q

(2 , ()

@ 0.5
Nora B

<) A B ¢ P E F ¢ H
.4 y dsk © 3.522 9)35 2 85 3

Prey | H(DA b A F F

Q

(2 , ()

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne0
let T:veEV - Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne0
let T:veEV - Z,,

while H is not empty do
pick vE€H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne0
let T:veEV - Z,,

while H is not empty do
pick vE€H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne0
let T:veEV - Z,,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 1

let 1:veEV - Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nent1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

PN
(¥)

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 1

let 1:veEV - Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 1

let 1:veEV - Z,;,

while H is not empty do
pick vEH.V s.t. indeg(v) =0

Tlv]l «n

nen+1

remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 1

let 1:veEV - Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlvl] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 2

let 1:veEV - Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv]l «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

(v)

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 2
let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 2
let 1:vEV S Z,;,

while H is not empty do
pick veEH.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))

let H be a copy of G
ne 2

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))

let H be a copy of G
ne 3

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 3
let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 3

let 1:vEV S Z,;,

while H is not empty do
pick vEH.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 3

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
neen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 4

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 4

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex

Order

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 4

let 1:vEV S Z,;,

while H is not empty do
pick vEH.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex | q r S t

Order 0 3

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 4

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+i
remove v from H
end while

return T
end algorithm

Vertex | q r S t

Order 0 3

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 5

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex | q r S t

Order 0 3

2. Execute the topological sort algorithm on the directed graph below.

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 5

let 1:vEV S Z,;,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

Vertex | q r S t

Order 0 3

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 5
let 1:veEV ->1Z,,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 5
let 1:veEV ->1Z,,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
v n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 6
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+d 1
nentl
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t
Order 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 6
let 1:veEV ->1Z,,

while H is not empty do
pick ve H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 6
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 6
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 7
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+d 1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 7

let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 7
let 1:veEV ->1Z,,

while H is not empty do
pick vE€H.V s.t. indeg(v) =0
Tlv] «n
nen+d1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 7 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne 7
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+ 1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 7 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne< 8
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
Tlv] «n
nen+d 1
remove v from H
end while

return T
end algorithm

The rest follows similarly..

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 7 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne< 8
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
T|lv] «n
nen+t1
remove v from H
end while

return T
end algorithm

2. Execute the topological sort algorithm on the directed graph below.

Vertex | q r S t

Order | 6 0 7 3

algorithm TopologicalSort(G(V,E))
let H be a copy of G
ne< 8
let 1:veEV ->1Z,,

while H is not empty do
pick ve€H.V s.t. indeg(v) =0
T|lv] «n
nen+t1
remove v from H
end while

return T
end algorithm

Doing it on paper..

https://docs.google.com/file/d/18tBFxlkPEKc5jRMNM_KQ_C60F7EPvfuv/preview

Question 1
(Strongly connected components)
1. How can the number of strongly connected components of a graph change if a new edge is added?

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

Euler tour if and only if
in-degree(v) = out-degree(v), Vv € V.

Strongly connected component?

Question 1
(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can itincrease?

Question 1
(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.
Can itincrease? No

Can it decrease?

Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.
Can itincrease? No
Can it decrease? Yes

Can it stay the same?

Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.
Can itincrease? No
Can it decrease? Yes

Can it stay the same? Yes

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), vv € V.

Oh boy

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(—) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(—) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(—) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v)

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

An Euler tour is a cycle i.e. each incoming edge is “paired” with an outgoing edge

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(—) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v)

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

There will be an edge left over!

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(—) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).
There will be an edge left over!

Exercise: show the same holds when indeg(v) < outdeg(v)

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Suppose | delete a vertex (x)

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Then there are vertices u,y such that:
indeg(y) = outdeg(y) + 1
indeg(u) = outdeg(u) - 1

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler path from u — v,

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler path from u — v,

We can just add back x to get an Euler tour

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

So let’s find an Euler tour in this graph

2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that

traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Suppose | delete y

2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

\
LY

P Yy

N e N .
N e

[|

X

\\~ 7,

Then there are vertices u,w such that
indeg(w) = outdeg(w) + 1
indeg(u) = outdeg(u) - 1

2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1
p N

indeg(u) = outdeg(u) - 1

This new graph (deleted y) shares the same structure as the previous graph.. We can induct
on the number of edges!

2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that

traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
\
I” = \\
\,
l\ X <
N

I

N
Se
<

indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

By Induction there is an Euler path from u — w

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Add back y

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:

indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Add back x

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

(<) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Complete the tour!

