justin-zhang.com

PSO 9

Connected Components, Dijkstra, toposort

Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has Euler tour if and only if

$$\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.$$

Question 2

(Dijkstra and topological sorting)

1. List the order that edges are added if we run Dijkstra's algorithm starting at node ${\cal A}$ in the following graph.

2. Execute the topological sort algorithm on the directed graph below.

Lets start with this one

Dijkstra

algorithm DijkstraShortestPath(G(V, E), $s \in V$)

```
let dist:V \to \mathbb{Z}
   let prev:V \rightarrow V
   let Q be an empty priority queue
   dist[s] \leftarrow 0
   for each v \in V do
       if v \neq s then
           dist[v] \leftarrow \infty
       end if
       prev[v] \leftarrow -1
       Q.add(dist[v], v)
   end for
   while Q is not empty do
       u \leftarrow Q.getMin()
       for each w \in V adjacent to u still in Q do
           d \leftarrow dist[u] + weight(u, w)
           if d < dist[w] then</pre>
              dist[w] \leftarrow d
              prev[w] \leftarrow u
              Q.set(d, w)
           end if
       end for
   end while
   return dist, prev
end algorithm
```

For a vertex s, finds shortest paths to all vertices. At each step..

- Consider current closest vertex u (priority queue)
- Greedily update path lengths to u's neighbors
- Mark as visited

A	ß	С	D	E	F	G	H	
dist 0	00	~	00	00	<i>9</i> 0	Ø	20	
Prev -1	—l	-)	-	-(-1	-(-1	
\cap								
(0,A)								
(@,B)								
(∞, с)								
(@, D)								
(00, E)								
(∞,F)								
(20,6)								

	A	ß	С	D	E	F	G	H	
dist	O	4	~	9	16	2	Ø	5	
Preu	-1	Α	-)	A	A	A	-(A	

	A	ß	С	D	E	F	G	H	
dist	O	4	~	9	16	Z	<i>P</i>	5	
Preu	-1	Α	-)	A	A	A	-(A	

	A	ß	С	D	E	F	G	H
dist	0	4	8	9	16	Z	8.5	3
Preu	-1	Α	-)	A	A	A	F	F

	A	ß	С	D	E	F	G	H
dist	O	4	~	9	16	Z	8.5	3
Prev	-1	Α	-)	A	A	A	F	F

	A	B	С	D	E	F	G	H
dist	O	3.5	00	9	16	Z	8.5	3
Prev	-1	H	-)	A	A	A	F	F

	A	ß	С	D	E	F	G	H
dist	O	3.5	~	9	16	Z	8.5	3
Prev	-1	H	-)	A	A	A	F	F

	A	B	С	D	E	F	6	H	
dist	0	3.5	0	9	13.5	2	8.5	3	
Pres	~(H	-1	A	B	A	F	F	

	A	B	С	D	E	F	6	H
dist	0	3.5	Ø	9	13.5	2	8.5	3
Pres	-1	H	-1	A	B	A	F	F

	A	в	C	D	Ę	F	6	H
dist	0	3.5	<mark>22.5</mark>	9	13.5	2	8.5	3
Pres	-1	11	G	A	B	A	F	F

	A	ß	C	P	Ę	F	6	H
dist	0	3.5	<mark>72.5</mark>	9	13.5	2	8.5	3
Pres	-1	H	G	A	B	A	F	F

	A	в	C	P	Ę	F	6	H
dist	0	3.5	22	9	13.5	2	8.5	3
Pres	~(11	ρ	A	B	A	F	F

	A	в	C	P	Ē	F	6	H
dist	0	3.5	22	9	13.5	2	8.5	3
Pres	~(11	ρ	A	B	A	F	F

	A	B	С	D	Ę	F	6	H
dist	0	3.5	22	9	13.5	2	8.5	3
Pres	~	H	ρ	A	B	A	F	F
			-					

	A	B	С	D	Ē	F	6	H
dist	0	3.5	22	9	13.5	2	8.5	3
Pres	-1	11	ρ	A	B	A	F	F
			ć					


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 0
   let T: v \in V \to \mathbb{Z}_{>0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```



```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 0
   let T: v \in V \to \mathbb{Z}_{>0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order										


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 0
   let T: v \in V \to \mathbb{Z}_{>0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order										


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 0
   let T: v \in V \to \mathbb{Z}_{>0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
   return T
end algorithm
```

Vertex	q	r	S	t	u	V	w	x	у	Z
Order		0								


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 1
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0								


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 1
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order		0								


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 1
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	W	x	у	Z
Order		0								


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 1
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0			1					


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 2
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
      n \leftarrow n+1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	W	x	у	z
Order		0			1					


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 2
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0			1					


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 2
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0			1					


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 2
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	w	x	у	Z
Order		0			1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 3
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order		0			1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 3
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	W	x	у	Z
Order		0			1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 3
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0			1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 3
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n+1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 4
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 4
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	w	x	у	Z
Order		0		3	1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 4
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order		0		3	1				2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 4
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n+1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	w	x	у	Z
Order		0		3	1			4	2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 5
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1			4	2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 5
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
    end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order		0		3	1			4	2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 5
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1			4	2	


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 5
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 6
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 6
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order		0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 6
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
      T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order		0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 6
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order	6	0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 7
   let i: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	V	W	x	у	Z
Order	6	0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 7
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order	6	0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 7
   let i: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order	6	0		3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 7
   let i: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order	6	0	7	3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 8
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	w	x	у	Z
Order	6	0	7	3	1			4	2	5

The rest follows similarly..

2. Execute the topological sort algorithm on the directed graph below.


```
algorithm TopologicalSort(G(V,E))
   let ^{H} be a copy of G
   n \leftarrow 8
   let I: v \in V \to \mathbb{Z}_{>0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
   return T
```

end algorithm

Vertex	q	r	S	t	u	v	W	x	у	Z
Order	6	0	7	3	1			4	2	5


```
algorithm TopologicalSort(G(V,E))
   let H be a copy of G
   n \leftarrow 8
   let I: v \in V \to \mathbb{Z}_{\geq 0}
   while H is not empty do
       pick v \in H.V s.t. indeg(v) = 0
       T[v] \leftarrow n
       n \leftarrow n + 1
       remove v from H
   end while
    return T
end algorithm
```

Vertex	q	r	S	t	u	v	W	x	у	Z
Order	6	0	7	3	1	8	9	4	2	5

Doing it on paper..

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has Euler tour if and only if

 $\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.$

Strongly connected component?

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can it increase?

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can it increase? No

Can it decrease?

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can it increase? No

Can it decrease? Yes

Can it stay the same?

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can it increase? No

Can it decrease? Yes

Can it stay the same? Yes

 $\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.$

Oh boy

```
in-degree(v) = out-degree(v), \forall v \in V.
```

```
(\rightarrow) Suppose G has an Euler tour.
```

We want to show every vertex v has indeg(v) = outdeg(v).

```
\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.
```

```
(\rightarrow) Suppose G has an Euler tour.
```

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

```
in-degree(v) = out-degree(v), \forall v \in V.
```

```
(\rightarrow) Suppose G has an Euler tour.
```

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

An Euler tour is a cycle i.e. each incoming edge is "paired" with an outgoing edge

```
\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.
```

```
(\rightarrow) Suppose G has an Euler tour.
```

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

There will be an edge left over!

```
in-degree(v) = out-degree(v), \forall v \in V.
```

```
(\rightarrow) Suppose G has an Euler tour.
```

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

There will be an edge left over!

Exercise: show the same holds when indeg(v) < outdeg(v)

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Suppose I delete a vertex (x)

 $\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Then there are vertices u,y such that:

indeg(y) = outdeg(y) + 1 indeg(u) = outdeg(u) - 1

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler **<u>path</u>** from $u \rightarrow y$,

 $\operatorname{in-degree}(v) = \operatorname{out-degree}(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler <u>**path**</u> from $u \rightarrow y$,

We can just add back x to get an Euler tour

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

So let's find an Euler tour in this graph
$in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Suppose I delete y

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Then there are vertices u,y such that: indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:

indeg(w) = outdeg(w) + 1 indeg(u) = outdeg(u) - 1

 $in-degree(v) = out-degree(v), \forall v \in V.$

v

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

u

Х

We want to show there is an Euler tour

This new graph (deleted y) shares the same structure as the previous graph.. We can induct on the number of edges!

w

y

 $in-degree(v) = out-degree(v), \forall v \in V.$

 (\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

By Induction there is an Euler path from $u \rightarrow w$

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Add back y

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

 $in-degree(v) = out-degree(v), \forall v \in V.$

(\leftarrow) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Complete the tour!