
PSO 8
Graph

Slides @ Justin-zhang.com

I can’t wait for spring break

Any fun plans

Unfortunately busy week so no slides today :(

Unfortunately busy week so no slides today :(

JUST KIDDING make
slides

What is an adjacency list?

Adjacency list

A linked list per vertex

E.g. if undirected..

1 2

4

5

3

6

Vertex Adjacency

1

2

3

4

5

6

Adjacency list

A linked list per vertex

E.g. if directed..

1 2

4

5

3

6

Vertex Adjacency (points to)

1

2

3

4

5

6

1 2

4

5

3

6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

Example: indeg. of 1?

1 2

4

5

3

6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

Example: indeg. of 1?

O(|Adjaceny list|)

1 2

4

5

3

6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

Try counting the indegree for v = 1

1 2

4

5

3

6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

For indeg. of vertex i:
Iterate over each vertex list other than i,
Count for every instant of i you see

O(|E|) time

Let’s see how this looks..

We want to go from this

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

We want to go from this to this

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points
to)

1 3,4

2 3

3

4

5 1

6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Runtime?

1 2

4

5

3
6

Vertex Adjacency (points to)

1

2 3

3 2,1

4 1

5 1

6

1 2

4

5

3
6

Vertex Adjacency (points
to)

1 3,4

2 3

3

4

5 1

6

Easiest algorithm
1. Iterate through each vertex list i
2. Add the “reverse” to the new

adjacency list

Runtime? O(|V| + |E|)

1

4

5

3
6

2

Square of this graph?

1

4

5

3
6

2

Square of this graph?

1

4

5

3
6

2

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

edge comes from _

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

edge comes from _
edge comes from _
They both share a (3,4) edge

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

They both share a (3,4) edge
- Idea: when adding edge (3,4),

Add all edges pointing to 3

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

They both share a (3,4) edge
- Idea: when adding edge (i,j),

Add all edges pointing to i (how do we get this?)

1

4

5

3
6

2

How do we get 3’s edges (ignore every else for now)

1

4

5

3
6

2

They both share a (3,4) edge
- Idea: when adding edge (i,j),

Add all edges pointing to i to j (how do we get this?)
GT .adjList(i) is exactly this!

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Bad example lol
Lets continue

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3,4,5,2

2

3

4 2

5

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2

2

3

4 2,3

5

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3

2

3

4 2,3

5 3

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3

2

3

4 2,3

5 3

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3

2

3

4 2,3

5 3,4

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

Time complexity?

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

Time complexity?
Time to process each
edge in G = Look through
an adj list <= |V|

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

Time complexity?
Time to process each
edge in G = O(|V|)

1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

G GT G2

Idea: when adding edge (i,j), Add
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to
 G2.adjList(k)

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

6

Time complexity?
O(|E||V|)

What in the world in an adjacency matrix?

What in the world in an adjacency matrix?

Adjacency Matrix

Edges represented in a |V| x |V| matrix

E.g. if undirected..

1 2

4

5

3

6

 1 2 3 4 5 6

1
2
3
4
5
6

Adjacency Matrix

Edges represented in a |V| x |V| matrix

E.g. if directed..

1 2

4

5

3

6

 1 2 3 4 5 6

1
2
3
4
5
6

“Row goes to column”

Someone give me a complete binary search tree

1

4

5

3
6

2

1

4

5

3
6

2

1

4

5
3

6

2

What do I notice about the adjacency matrix (specifically column 3)

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

1

4

5
3

6

2

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most
We go right when entry(i,j) = 0

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most
We go right when entry(i,j) = 0

1

4

5
3

6

2

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most
We go right when entry(i,j) = 0 By obs 2, we go right |V| times

We can try..

Hmm if I can’t come up with an example, prob false

The answer key says..

But I don’t know what this means lol

Why should the degree be an even number?

Hmm if I can’t come up with an example, prob false

We can prove it by counting

A combinatorial
counting argument

Demonstrating another
sorting algorithm

Hmm if I can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

A combinatorial
counting argument

Hmm if I can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

A combinatorial
counting argument

Hmm if I can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

But the maximum number of edges in a

graph of 5 nodes is..

 A combinatorial
counting argument

Hmm if I can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

But the maximum number of edges in a

graph of 5 nodes is.. (5 choose 2) = 10

This is less than 15, contradiction!

A combinatorial
counting argument

We can try.. (again)

We can’t do this because a vertex with degree n - 1 connects to all other vertices

There cannot be a vertex with 0 degree

Easy peasy

Side note: I would say this is a theorem

Lemmas: intermediate results used to prove theorems
Corollaries: easy follow-ups to to theorems

IMO this stands on its own

Side note: I would say this is a theorem

Lemmas: intermediate results used to prove theorems
Corollaries: easy follow-ups to to theorems

IMO this stands on its own

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

|V| = 5, |E| = 4

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Can |E| < |V| - 1?

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Can |E| < |V| - 1?

Intuition: lose connectivity

Lets prove this

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

For each unique vertex I visit, I had to take an edge there

|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex,

and mark every edge I step on

For each unique vertex I visit, I had to take an edge there

Since I visit |V| - 1 unique vertices (minus the start), |E| >= |V| - 1
|V| = 5, |E| = 3

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

We showed |E| >= |V| - 1

Can |E| > |V| - 1?

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Can |E| > |V| - 1?

(Anywhere I add the edge will create a cycle)

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

(Anywhere I add the edge will create a cycle)

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

(Anywhere I add the edge will create a cycle)

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

(Anywhere I add the edge will create a cycle)

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

(Anywhere I add the edge will create a cycle)

We argue this formally

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

Connected implies longest path in the graph is through

all |V| nodes.

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

Connected implies longest path in the graph is through

all |V| nodes.

But a path of |V| nodes only has |V| - 1 edges

|V| = 5, |E| = 5

WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

Connected implies longest path in the graph is through

all |V| nodes.

But a path of |V| nodes only has |V| - 1 edges

|V| nodes with |V| edges forms a cycle, contradiction!
|V| = 5, |E| = 5

WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

|V| = 5, |E| = 4

WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

|V| = 5, |E| = 4

WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

|V| = 5, |E| = 4

WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

There is an edge you can delete to get rid of the cycle
|V| = 5, |E| = 4

WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

There is an edge you can delete to get rid of the cycle

We still have connectivity with |V| -2 edges, contradiction |V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

What do I notice?

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a

unique vertex + a seen vertex (except the starting edge)

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a

unique vertex + a seen vertex (except the starting edge)

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a

unique vertex + a seen vertex (except the starting edge)

The edge I start with has 2 unique vertices

|V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a

unique vertex + a seen vertex (except the starting edge)

The edge I start with has 2 unique vertices

vertices seen = (2) + (|E| - 1) (1) = 2 + |V| - 2 = |V| |V| = 5, |E| = 4

WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a

unique vertex + a seen vertex (except the starting edge)

The edge I start with has 2 unique vertices

vertices seen = (2) + (|E| - 1) (1) = 2 + |V| - 2 = |V|, hence connected |V| = 5, |E| = 4

BFS DFS

BFS DFS

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

Lets analyze cost

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap?

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap? O(1)

What’s the cost of this?

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap? O(1)

What’s the cost of this? O(# v’s neighbors) <= O(|V|)

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap? O(1)

What’s the cost of this? O(# v’s neighbors) <= O(|V|)

How many iterations of the while loop?

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap? O(1)

What’s the cost of this? O(# v’s neighbors) <= O(|V|)

How many iterations of the while loop? O(|V|)

 Total cost: O(|V|2)

BFS(s):

 stack/queue(?) visit;

 Add s to visit

 while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

Diameter = length of longest path in the
tree

Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f

a

b c

d e f

g

Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f

But who says we know where the “root” is?

a b

c

d

e

f

g

Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f

But who says we know where the “root” is?

a

b
c

d
e

f
g

Fun fact: this is how trees look irl
(I touched grass 7 years ago)

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

a

b
c

d
e

f
g

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

a

b
c

d
e

f
g

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

a

b
c

d
e

f
g

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)

a

b
c

d
e

f
g

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)

a

b
c

d
e

f
g

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)

Proof in the solution.pdf : kinda tedious but intuitively works

a

b
c

d
e

f
g

When in doubt, draw it out

When in doubt, draw it out

