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Question 1
(Adjacency-list Representation)

1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

2. The transpose of a directed graph G = (V. E) is the graph G" = (V. ET), where E" := {(v,u) :
(u,v) € E}. In other words, G" is G with all its edges reversed. Describe an efficient algorithm for
computing G' from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
G*? from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

What is an adjacency list?



Adjacency list

A linked list per vertex

E.g. if undirected..
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Adjacency list

A linked list per vertex

E.g. if directed..
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1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

Vertex Adjacency (points to)
_ 1
Example: indeg. of 1?
2 3
3 2.1
\ 4 1
5 1
6




1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

Vertex Adjacency (points to)
_ 1
Example: indeg. of 1?
2 3
3 2.1
\ 4 1
5 1
6

O(|Adjaceny list|)



1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

Try counting the indegree forv = 1 Vertex | Adjacency (points to)
1
2 3
3 2,1
\ 4 1
5 1
6




1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

For indeg. of vertex i:

Iterate over each vertex list other than i, _ .
Count for every instant of i you see Vertex | Adjacency (points to)

O(|E|) time 1
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Question 1
(Adjacency-list Representation)

1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

2. The transpose of a directed graph G = (V, E) is the graph G' = (V,E"), where E' := {(v,u) :
(u,v) € E}. In other words, G" is G with all its edges reversed. Describe an efficient algorithm for
computing G' from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
~2 o . . . : 1o : e K e ] . .3
7~ from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

Let’s see how this looks..




2. The transpose of a directed graph G = (V, E) is the graph GT = (V,E"), where E" := {(v,u) :
(u,v) € E}. In other words, G" is G with all its edges reversed. Describe an efficient algorithm for

v

computing G from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.

Vertex | Adjacency (points to)
1
2 3
3 2,1
4 1
5 1
6

We want to go from this



2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

Vertex Adjacency (points to)
1

2 3

3 2,1

4 1

5 1

6

Vertex Adjacency (points
We want to go from this to this “

1 3,4

2 3

3 2

4

5 1
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2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.
Vertex Adjacency (points to)
]
2 3 Easiest algorithm
5 = 1. lterate through each vertex list i
2. Add the “reverse” to the new
S adjacency list
5 1
6

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6




2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.

Vertex Adjacency (points to)

]

2 3 Easiest algorithm

5 .1 1. Iterate through each vertex list i
_ 2. Add the “reverse” to the new

¢ 1 adjacency list

5 1
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2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.
Vertex Adjacency (points to)
]
2 3 Easiest algorithm
5 .1 1. lterate through each vertex list i
— 2. Add the “reverse” to the new
S adjacency list
5 1
6

Vertex Adjacency (points
to)

1 3,4

2 3

3 2

4

5 1

6




2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :

(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.

0.8

Vertex Adjacency (points to)
1
2 3
3 2,1
4 1
5 T
6
Vertex Adjacency (points
to)
1 3.4
2 3
3 2
4
5 1
6

Easiest algorithm

1.
2.

Iterate through each vertex list i
Add the “reverse” to the new
adjacency list



2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

Vertex Adjacency (points to)

1
2 3 Easiest algorithm
5 iy 1. lterate through each vertex list i
2. Add the “reverse” to the new
S adjacency list
5 1
) -

Vertex Adjacency (points
to)

1 3.4




2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.
Vertex Adjacency (points to)
]
2 3 Easiest algorithm
5 .1 1. lterate through each vertex list i
2. Add the “reverse” to the new
S adjacency list
5 1
6

Runtime?

Vertex Adjacency (points
to)

1 34
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2. The transpose of a directed graph G = (V, E) is the graph G = (V,ET), where E" := {(v,u) :
(u,v) € E}. In other words, G' is G with all its edges reversed. Describe an efficient algorithm for
computing 7 from G for the adjacency-list representations of G and analyze the runtime of your

algorithm.
Vertex Adjacency (points to)
]
2 3 Easiest algorithm
5 .1 1. lterate through each vertex list i
2. Add the “reverse” to the new
S adjacency list
5 1
6

Runtime? O(|V| + |E|)

Vertex Adjacency (points
to)

1 34

2 3

3

4

5 1

6




Question 1
(Adjacency-list Representation)
1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

2. The transpose of a directed graph G = (V, E) is the graph G = (V,E"), where E" := {(v,u) :
(u,v) € E}. In other words, G" is G with all its edges reversed. Describe an efficient algorithm for
computing G' from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
7% from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

Square of this graph?
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Question 1
(Adjacency-list Representation)

1. Given an adjacency-list representation of a directed graph, how long does it take to compute the
out-degree of a vertex? How long does it take to compute the in-degree of a vertex?

2. The transpose of a directed graph G = (V, E) is the graph G = (V,E"), where E" := {(v,u) :
(u,v) € E}. In other words, G" is G with all its edges reversed. Describe an efficient algorithm for
computing G' from G for the adjacency-list representations of G and analyze the runtime of your
algorithm.

3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
7% from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

Square of this graph?
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
G? from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

How do we get 3’s edges (ignore every else for now)
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
G? from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

How do we get 3’s edges (ignore every else for now)
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edge comes from |}



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
G? from G for the adjacency-list representations of G and analyze the runtime of your algorithm.

How do we get 3's edges (ignore every else for now)

(2
O

edge comes from |}
edge comes from
They both share a (3,4) edge



3. The square of a directed graph G = (V, E) is the graph G? = (V. E?), where (u,v) € E? if and only if

G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
~2 o g : . 2 . oy 4 . A

G~ from G for the adjacency-list representations of ¢ and analyze the runtime of your algorithm.

How do we get 3’s edges (ignore every else for now)

They both share a (3,4) edge

- ldea: when adding edge (3,4),
Add all edges pointing to 3



3. The square of a directed graph G = (V, E) is the graph G? = (V. E?), where (u,v) € E? if and only if

(7 contains a path with at most two edges between w and v. Describe an efficient algorithm for computing
~2 ¢ g i . 3 2 . oy 4 . A

G~ from G for the adjacency-list representations of ¢ and analyze the runtime of your algorithm.

How do we get 3’s edges (ignore every else for now)
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They both share a (3,4) edge
- ldea: when adding edge (i,j),
Add all edges pointing to i (how do we get this?)



3. The square of a directed graph G = (V, E) is the graph G? = (V. E?), where (u,v) € E? if and only if

(7 contains a path with at most two edges between w and v. Describe an efficient algorithm for computing
~2 o ~ e 3 3 . oy 4 . A

G~ from G for the adjacency-list representations of ¢ and analyze the runtime of your algorithm.

How do we get 3’s edges (ignore every else for now)

They both share a (3,4) edge
- ldea: when adding edge (i,j),

Add all edges pointing to i to j (how do we get this?)
G .adjList(i) is exactly this!



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing
G? from G for the adjacency-list representations of G and analyze the runtime

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to |
1 34,5 1 1 Foriin|V|:
For j in G.adjList(i):
2 2 3 2
3 2 3 14 3
4 3 4 15 4
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacency-list representations of G and analyze the runtime of your algoritl:@

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to |
1 3,4,5 1 1 3 Foriin |V|:
For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)
3 2 3 14 3
4 3 4 15 4
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacency-list representations of G and analyze the runtime of your algoritl:@

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3 Foriin |V|:
For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)
3 2 3 14 3
4 3 4 15 4
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@
a ‘l:...:“..‘ :“‘.“‘v
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. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3 Foriin |V|:
For j in G.adjList(i):

2 2 3 2 add j to G2.adjList(i)

for k in GT.adjList(i):
3 2 3 14 3 add j to

G2.adiList(k)
4 3 4 15 4
5 . . 1 Bad example lol
° Lets continue

6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@
a ‘l:...:“..‘ :“‘.“‘v
AR

- - e

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3 Foriin |V|:

For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)

for k in G'.adjList(i):
3 2 3 14 3 add j to
G2.adjList(k)

4 3 4 15 4
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@
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. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3,4 Foriin |V|:
For j in G.adjList(i):

2 2 3 2 add j to G2.adjList(i)

for k in G'.adjList(i):
3 2 3 14 3 add | to

G2.adjList(k)

4 3 4 15 4
5 4 5 1 5
6 6 6
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@

G G’ G?

. ) . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Ad Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3,4 Foriin |V|:
For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)
for k in G".adjList(i):

3 2 3 14 3 addjto

G*.adjList(k)
4 3 4 15 4
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@
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. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3,4 Foriin |V|:

For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)

for k in G'.adjList(i):
3 2 3 14 3 add | to
G2.adjList(k)

4 3 4 15 4
5 4 5 1 5
6 6 6
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

GT

~-list representations of G and analyze the runtime o

H(’(’j‘

Idea: when adding edge (i,j), Add

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj all edges pointing to i to j
1 3,4,5 Foriin |V|:
For j in G.adjList(i):
2 add j to G2.adjList(i)
for k in G'.adjList(i):

3 add j to

G2.adList(k)
4
5
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi' -list representations of G and analyze the runtime of your algoritl:@

G G’ G?

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3,4,5 Foriin |V|:
For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)
for k in G".adjList(i):

3 2 3 14 3 addjto

G*.adjList(k)
4 3 4 15 4
5 4 5 1 5
6 6 6
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

GT

~-list representations of G and analyze the runtime o

H(’(’j‘

Idea: when adding edge (i,j), Add

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Ad] all edges pointing to i to j
1 3,4,5 Foriin |V|:
For j in G.adjList(i):

2 add j to G2.adjList(i)

for k in G'.adjList(i):
3 addjto

G2.adList(k)

4
5
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

GT

~-list representations of G and analyze the runtime o

H(’(’j‘

Idea: when adding edge (i,j), Add

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Ad] all edges pointing to i to j
1 3,4,5 Foriin |V|:

For j in G.adjList(i):
2 add j to G2.adjList(i)

for k in G'.adjList(i):
3 addjto
G2.adList(k)

4
5
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

GT

~-list representations of G and analyze the runtime o

H(’(’j‘

Idea: when adding edge (i,j), Add

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj all edges pointing to i to j
1 3,4,5 Foriin |V|:
For j in G.adjList(i):
2 add j to G2.adjList(i)
for k in G'.adjList(i):

3 add j to

G2.adList(k)
4
5




@ &

3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adjacoi- -list representations of G and analyze the runtime of yvour algorith

G G’ G?

. . . Idea: when adding edge (i,j), Add
Vertex Adj Vertex Adj Vertex Adj all edges pointing to i to j
1 3,4,5 1 1 3,4,5,2 Foriin |V|:
For j in G.adjList(i):
2 2 3 2 add j to G2.adjList(i)
for k in G".adjList(i):

3 2 3 14 3 add j to

G2.adjList(k)
4 3 4 15 4 2
5 4 5 1 5
6 6 6




3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

(&

G

~-list representations of G and analyze the runtime

H(’(’j‘

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,452
2

3

4 2,3

5

of vour algorith

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G'.adjList(i):
addjto
G2.adjList(k)
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

~-list representations of G and analyze the runtime

H('("i‘

of vour algorith

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3
2

3

4 2,3

5 3

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G".adjList(i):
add j to
G2.adjList(k)
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3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G? from G for the adj

G

~-list representations of G and analyze the runtime

H(’(’j‘

of vour algorith

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3
2

3

4 2,3

5 3

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G

GT

G? from G for the adjacoi- ~-list representations of G and analyze the runtime

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3
2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G

GT

G? from G for the adjacoi- ~-list representations of G and analyze the runtime

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G".adjList(i):
add j to
G2.adjList(k)



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G

GT

G? from G for the adjacoi' ~-list representations of G and analyze the runtime

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G

GT

G? from G for the adjacoi' ~-list representations of G and analyze the runtime

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)

Time complexity?



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

GT

G? from G for the adjacoi' ~-list representations of G and analyze the runtime

G

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

G2
Vertex Adj
1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)

Time complexity?
Time to process each
edge in G = Look through
an adj list <= |V/|



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

GT

G? from G for the adjacoi' ~-list representations of G and analyze the runtime

G

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

G2
Vertex Adj
1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)

Time complexity?
Time to process each
edge in G = O(|V|)



3. The square of a directed graph G = (V, E) is the graph G? = (V, E?), where (u,v) € E? if and only if
G contains a path with at most two edges between v and v. Describe an efficient algorithm for computing

G

GT

G? from G for the adjacoi' ~-list representations of G and analyze the runtime

Vertex Adj Vertex Adj
1 3,4,5 1

2 2 3

3 2 3 14
4 3 4 15
5 4 5 1

6 6

Vertex Adj

1 3,4,5,2,3,
4

2

3

4 2,3

5 3,4

Idea: when adding edge (i,j), Add
all edges pointing to i to j

Foriin |V|:
For j in G.adjList(i):
add j to G2.adjList(i)
for k in G.adjList(i):
addjto
G2.adjList(k)

Time complexity?
O(IEIIVI)



Question 2

(Adjacency-matrix Representation)
1. Give an adjacency-matrix representation for a complete binary search tree on 7 vertices numbered
from 1 to 7.

2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

What in the world in an adjacency matrix?



Question 2

(Adjacency-matrix Representation)
1. Give an adjacency-matrix representation for a complete binary search tree on 7 vertices numbered
from 1 to 7.

2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

What in the world in an adjacency matrix?



Adjacency Matrix

Edges represented in a |V| x [V| matrix

E.g. if undirected..

o ©

OO, WN -

1

2 3 4 5 6



Adjacency Matrix )
Row goes to column”

Edges represented in a |V| x |V| matrix 1 2 3 4 5 6

E.g. if directed..

OO, WN -



Question 2

(Adjacency-matrix Representation)

1. Give an adjacency-matrix representation for a complete binary search tree on 7 vertices numbered
from 1 to 7.

2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Someone give me a complete binary search tree



Question 2
(Adjacency-matrix Representation)

1. Give an adjacency-matrix representation for a complete binary search tree on 7 vertices numbered
from 1 to 7.

2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

) @
IO

N

What do | notice about the adjacency matrix (specifically column 3)

| 2 %2 4 5 6
(o © | 11O
70 0 | 9990
0 O o © o 0
4 O © |\ © O O
5 0 O | O 99
60 O )y 0 09



2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

) @
IO

N

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

|l 2 % 4 5 6
[0 O [\ |1V O
20 o 1|09 9
0 O o © o 0
4 O © |} |1© O O
5 0 O |]|0 99
60 oo oog




2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

&

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

1 2 %2 4 5 6
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70 © 11099
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

1) @
IO

N

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

Il 2 % 4 5 6 _
(O Algorithm:
[0 O |l 1. Startat (i,j) = (1,1) entry
270 O 119 RN,
0 O o © o 0
4 O o |\ |© O O
5 0 O |]l0 9y
60 O o o9




2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

T oo®

O\W—DL/\')N__,
et O G

N

2 % 4 5 6
ol O
®) ]OOO
0 & O 7
o [} |1© OO
O |ll0o 99
O DlI0o 09

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

Algorithm:

1. Startat (i,j) = (1,1) entry
2. whilei<|V|:
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

245 6 |
(O Algorithm:
| 1. Startat (ij) = (1,1) entry
1[0 © O 2 whiei<|V]:
0o O o0 O a. Ifentry(ij) = 0: i += 1 \\go right
) 1© O O
10 99
O O O
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

Algorithm:

1. Startat (i,j) = (1,1) entry

2. whilei<|V|:
a. |Ifentry(i,j) = 0:i+=1\\go right
b. else:j+=1\\go down
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

Algorithm:
1. Startat (i,j) = (1,1) entry
2. whilei<|V|:

a. Ifentry(i,j) = 0:i+=1\\go right
b. else:j+=1\\go down

We only go down when entry(i,j) = 1



2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

2 % 5 6
' Cj \5 O Algorithm:
o © |l 1. Startat (i,j) = (1,1) entry
20 O 110990 2 whiei<|V|:
a. Ifentry(i,j) = 0:i+=1\\go right

v 0 @ age b. else:j+=1\\go down
4 O o [\ |© O O

5 O O |]|0o 9 ¢ Weonlygodownwhen entry(i,j) =1

6o o l|)lo o O By obs 1, we will go down 2 times at most




2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

2 % 5 6
l c‘{ \5 O Algorithm:
o © |l 1. Startat (i,j) = (1,1) entry
20 O 110990 2 whiei<|V|:
a. Ifentry(i,j) = 0:i+=1\\go right

v 0 @ age b. else:j+=1\\go down
4 O o [\ |© O O

5 O O |]|0o 9 ¢ Weonlygodownwhen entry(i,j) =1

6o o l|)lo o O By obs 1, we will go down 2 times at most

We go right when entry(i,j) = 0
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2. Show how to determine in O(|V]) time, whether a directed graph G contains a universal-sink, i.e.
a vertex with in-degree |V| — 1 and out-degree 0, given an adjacency-matrix for G.

Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all Os

Algorithm:
1. Startat (i,j) = (1,1) entry
2. whilei<|V|:

a. Ifentry(i,j) = 0:i+=1\\go right
b. else:j+=1\\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most
We go right when entry(i,j) = 0 By obs 2, we go right |V| times



Question 3
(Graphs)

1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

(2) There exists a simple, undirected graph G with n vertices, whose vertex degrees are 0,1,2,...,n—1.
(assume n > 3)

2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:
Let GG be an undirected graph. any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;

(2) G is acyclic;

(3) G satisfies |E| = |V| — 1.

We can try..



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

Hmm if | can’t come up with an example, prob false

The answer key says..

i False. For an undirected graph, the total degree should be a even number. But 5 =3 = 15, which
is odd.

™1 A —d 12 .42 1 i - 21 -d tal 1 n -— 3 41 —dh L 1

But | don’t know what this means lol

Why should the degree be an even number?



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

Hmm if | can’t come up with an example, prob false

We can prove it by counting De?ons’tlratir_lsr]] another
sorting algorithm

e o

| ’ \ omg hilt!

A combinatorial
counting argument



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

Hmm if | can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

| ’ \ omg hit!!

A combinatorial
counting argument



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

Hmm if | can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

| | \ omg hit!

A combinatorial
counting argument



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.
I graj g

Hmm if | can’t come up with an example, prob false

We can prove it by counting
Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

But the maximum number of edges in a

graph of 5 nodes is.. | | N omg hit

A combinatorial
counting argument



1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

Hmm if | can’t come up with an example, prob false

We can prove it by counting
Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

But the maximum number of edges in a

graph of 5 nodes is.. (5 choose 2) = 10 I | N omg hit

A combinatorial

This is less than 15, contradiction! _
counting argument



Question 3
(Graphs)

1. True or False:

Ll} I] . 3 . ] l. l N ] " l " I 'l E I P

(2) There exists a simple, undirected graph G with n vertices, whose vertex degrees are 0,1,2,...,n—1.
(assume n > 3)

2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph. any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;

(2) G is acyclic;

(3) G satisfies |[E| = |V| - 1.

We can try.. (again)



(2) There exists a simple, undirected graph G with n vertices, whose vertex degrees are 0,1,2....,n—1.
(assume n > 3)

We can’t do this because a vertex with degree n - 1 connects to all other vertices

There cannot be a vertex with 0 degree

Easy peasy



Question 3
(Graphs)

1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

(2) There exists a simple, undirected graph G with n vertices, whose vertex degrees are 0,1,2,... . n—1.
(assume n > 3)

2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let G be an undirected graph. any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;

(2) G is acyclic;

(3) G satisfies |[E| = |V| - 1.

Side note: | would say this is a theorem

Lemmas: intermediate results used to prove theorems
Corollaries: easy follow-ups to to theorems

IMO this stands on its own



Question 3
(Graphs)

1. True or False:

(1) There exists a simple, undirected graph with 5 nodes, each of degree 3.

(2) There exists a simple, undirected graph G with n vertices, whose vertex degrees are 0,1,2,...,n—1.
(assume n > 3)

2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph. any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;

(2) G is acyclic;

(3) G satisfies |[E| = |V| - 1.

Side note: 'would say this is a theorem

Lemmas: intermediate results used to prove theorems

Corollaries: easy follow-ups to to theorems
S y P

RIMO this stands on its own



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic

Can |E| < |V]-17?

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic
Can |E| < |V]-17?

Intuition: lose connectivity

Lets prove this

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic

Connectivity implies | can take a walk to every vertex on the graph

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

Connectivity implies | can take a walk to every vertex on the graph
Say | talk this walk starting on some vertex,

\

and mark every edge | step on q@/@

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Connectivity implies | can take a walk to every vertex on the graph

Say | talk this walk starting on some vertex,

and mark every edge | step on CD\ )p
-
=/ .
VI =5, [E|=3




2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

Connectivity implies | can take a walk to every vertex on the graph
Say | talk this walk starting on some vertex,

and mark every edge | step on

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

Connectivity implies | can take a walk to every vertex on the ~ranh
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Say | talk this walk starting on some vertex, @/

and mark every edge | step on

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

-
Connectivity implies | can take a walk to every vertex on the graph % ¥

Say | talk this walk starting on some vertex,

A

and mark every edge | step on

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

-
Connectivity implies | can take a walk to every vertex on the graph % #a

Say | talk this walk starting on some vertex,
A

and mark every edge | step on

For each unique vertex | visit, | had to take an edge there

V=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

-
Connectivity implies | can take a walk to every vertex on the graph % #a

Say | talk this walk starting on some vertex,
and mark every edge | step on -
For each unique vertex | visit, | had to take an edge there

Since | visit [V| - 1 unique vertices (minus the start), |[E| >=|V| - 1
IVI=5, |E[=3



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic
We showed |E| >= |V| -1

Can |E| > |V|-17?

VI =5, [E[ =5
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graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Can |E| > |V]|-17?

(Anywhere | add the edge will create a cycle)

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

(Anywhere | add the edge will create a cycle)

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

(Anywhere | add the edge will create a cycle)

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

(Anywhere | add the edge will create a cycle)

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

(Anywhere | add the edge will create a cycle)

We argue this formally

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

Connected implies longest path in the graph is through

all V| nodes.

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > V] - 1
Connected implies longest path in the graph is through

all V| nodes.

But a path of |V| nodes only has |V| - 1 edges

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected

graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G

is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+2->3
Suppose G is connected and acyclic
Assume for the sake of contradiction |E| > V] - 1

Connected implies longest path in the graph is through

all |V| nodes.
But a path of |V| nodes only has |V| - 1 edges

|V| nodes with |V| edges forms a cycle, contradiction!

VI =5, [E[ =5



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:1+3->2
Suppose connected and |E| = |V| - 1

Can there be a cycle?

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+3->2
Suppose connected and |E| = |V| - 1
Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+3->2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+3->2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

There is an edge you can delete to get rid of the cycle
VI =5, |[E|=4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:1+3->2

Suppose connected and |E| = |V] - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1
edges.

Suppose there is a cycle.

There is an edge you can delete to get rid of the cycle

We still have connectivity with [V| -2 edges, contradiction VI=5 [E[=4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1
Suppose acyclic and |E| = |V| - 1.
Suppose | remove all |E| edges from the graph Q

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.
Suppose | remove all |E| edges from the graph Q
| place them back one by one. Q

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = |V| - 1.

WTS:2+3->1
Suppose acyclic and |E| = |V| - 1.
Suppose | remove all |E| edges from the graph

| place them back one by one.

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;

(3) G satisfies |E| = V| — 1.

WTS:2+3->1
Suppose acyclic and |E| = |V| - 1.
Suppose | remove all |E| edges from the graph

| place them back one by one.

What do | notice?

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

Suppose | remove all |E| edges from the graph
| place them back one by one.

By acyclic property, any edge | add back has to contain a

unique vertex + a seen vertex (except the starting edge) Q

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

Suppose | remove all |E| edges from the graph
| place them back one by one.

By acyclic property, any edge | add back has to contain a

unique vertex + a seen vertex (except the starting edge)

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

Suppose | remove all |E| edges from the graph

| place them back one by one.

By acyclic property, any edge | add back has to contain a
unique vertex + a seen vertex (except the starting edge)

The edge | start with has 2 unique vertices

V=5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

Suppose | remove all |E| edges from the graph

| place them back one by one.

By acyclic property, any edge | add back has to contain a
unique vertex + a seen vertex (except the starting edge)

The edge | start with has 2 unique vertices

# verticesseen=(2)+ (|[E|-1) (1) =2+ |V|-2=|V]| V[ =5, |E| =4



2. A tree is the most widely used special type of graph, in a sense that it is the minimal connected
graph. Prove the following important lemma:

Let GG be an undirected graph, any two of the following properties imply the third property. and that G
is a tree.

(1) G is connected;
(2) G is acyclic;
(3) G satisfies |E| = |V| - 1.

WTS:2+3->1

Suppose acyclic and |E| = |V| - 1.

Suppose | remove all |E| edges from the graph

| place them back one by one.

By acyclic property, any edge | add back has to contain a
unique vertex + a seen vertex (except the starting edge)

The edge | start with has 2 unique vertices

# vertices seen = (2) + ([E| - 1) (1) = 2 + |V| - 2 = |V|, hence connected  |V| =9, [E[ =4






Question 4

(Review)
Consider the following undirected graph drawn below. For each part below we are only asking for the
order in which edges are added. Assume that the graph is represented in adjacency-list form and that

each adjacency-list is given in lexicographic order.

e List the order that edges are added to the BFS tree if we run BFS starting at node A.

e List the order that edges are added to the DFS tree if we run DFS starting at node A.

@\ 6.5 @ 1 @ 0.5 @ Es

14 0 8 ‘ > * 10

BFS

O———G6——O
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order in which edges are added. Assume that the graph is represented in adjacency-list form and that

each adjacency-list is given in lexicographic order.

e List the order that edges are added to the BFS tree if we run BFS starting at node A.
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Question 5

(Breadth-first search)

1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of

the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.

BFS(s):
stack/queue(?) visit;
Add s to visit

while visit nonempty:

Lets analyze cost

v = visit.pop()
If v not seen yet, add its neighbors to visit



Question 5

(Breadth-first search)

1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of

the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
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(Breadth-first search)
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the adjacency-list representation?
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reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
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L _ What'’s the cost of this?
while visit nonempty:
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If v not seen yet, add its neighbors to visit
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(Breadth-first search)

1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of
the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each

reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
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BFS(s):
stack/queue(?) visit; What's the cost of this when seen is a hashmap? O(1)
Add s to visit
L _ What's the cost of this? O( # v's neighbors) <= O(|V])
while visit nonempty:
v = visit.pop()
If v not seen yet, add its neighbors to visit




Question 5

(Breadth-first search)

1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of
the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each

reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.

BFS(s):
stack/queus(?) visit; What's the cost of this when seen is a hashmap? O(1)
Add s to visit

while visit nonempty:
v = visit.pop() How many iterations of the while loop?

What's the cost of this? O( # v's neighbors) <= O(|V])

If v not seen yet, add its neighbors to visit




Question 5

(Breadth-first search)

1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of
the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each

reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.

BFS(s):
stack/queus(?) visit; What's the cost of this when seen is a hashmap? O(1)
Add s to visit

while visit nonempty:
v = visit.pop() How many iterations of the while loop? O(|V])

What's the cost of this? O( # v's neighbors) <= O(|V])

If v not seen yet, add its neighbors to visit Total cost: 0(|V|2)




Question 5
(Breadth-first search)
1. What is the running time of BFS if we represent its input graph by an adjacency-matrix instead of

the adjacency-list representation?

2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let 7' = (V, E') be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.

BFS(s): Diameter = length of longest path in the
stack/queue(?) visit; tree
Add s to visit
while visit nonempty:
v = visit.pop()
If v not seen yet, add its neighbors to visit



2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
tree.

Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f




2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
tree.

Diameter = length of longest path in the tree

Suppose this is my tree °

From visual inspection, clear that diameter is g to f

But who says we know where the “root” is? Q Q



2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
tree.

Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f

But who says we know where the “root” is?

Fun fact: this is how trees look irl
(I touched grass 7 years ago)



2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
tree.

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.
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Say we run BFS(c) and return last vertex seen
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So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)




2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.
Diameter = length of longest path in the tree
Suppose this is my tree
So the best we can do is just to run BFS from some starting node.
Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)



2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a

tree.
Diameter = length of longest path in the tree
Suppose this is my tree
So the best we can do is just to run BFS from some starting node.
Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)



2. (Diameter of a tree) We know that the BFS finds the shortest path from the source s to each
reachable vertex. Now let T' = (V, E) be a tree and define The diameter of a tree dia(T") be the largest
of all shortest-path distances in the tree. Think about how to use BFS to compute the diameter of a
tree.

Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)

Proof in the solution.pdf : kinda tedious but intuitively works



Question 6

(Depth-first search)

1. Is is possible that a vertex u of a directed graph G can end up in a depth-first tree containing only
u, even though u has both incoming and outgoing edges in G7

2. TRUE or False: A directed graph G contains a path from u to v, and if u is visited before v in a
DFS of GG, then v must be a descendant of u in the corresponding DFS tree.

When in doubt, draw it out
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2. TRUE or False: A directed graph G contains a path from u to v, and if u is visited before v in a
DFS of GG, then v must be a descendant of u in the corresponding DFS tree.

When in doubt, draw it out



HAVE A
GREAT
SPRING
BREAK!

RANRAR




