
PSO 7
Trees, Trees, Trees, etc.

Midterm Tomorrow

Please make sure to go to your assigned room!

Get some sleep

Today on the agenda…

- 2-3 trees

Today on the agenda…

- 2-3 trees
- LLRB Trees

- insertion

Today on the agenda…

- 2-3 trees
- LLRB Trees

- Insertion
- deletion

Today on the agenda…

- 2-3 trees
- LLRB Trees

- Insertion
- Deletion

- B Trees

Today on the agenda…

- 2-3 trees
- LLRB Trees

- Insertion
- Deletion

- B Trees
- RB Trees facts

Today on the agenda…

- 2-3 trees
- LLRB Trees

- Insertion
- Deletion

- B Trees
- RB Trees facts
- AVL Trees

First, what is a 2-3 tree?

First, what is a 2-3 tree?

T is a 2-3 tree if:

- T empty
- T is a 2 node
- T is a 3 node

First, what is a 2-3 tree?

T is a 2-3 tree if:

- T empty
- T is a 2 node
- T is a 3 node

T –>

First, what is a 2-3 tree?

T is a 2-3 tree if:

- T empty
- T is a 2 node
- T is a 3 node

T –> v

P Q

P,Q are 2-3 subtrees where
- P,Q have the same height
- P < v < Q

First, what is a 2-3 tree?

T is a 2-3 tree if:

- T empty
- T is a 2 node
- T is a 3 node

T –>

P R

P,Q,R are 2-3 subtrees where
- P,Q have the same height
- P < v1< Q < v2 < R

Q

 v1 v2

Let’s try to make some 2-3 trees

Is this a 2-3 tree?

Let’s try to make some 2-3 trees

Is this a 2-3 tree?
No the root and inner node
is missing its left child

Let’s try to make some 2-3 trees

How about this one?

Let’s try to make some 2-3 trees

How about this one?
No,

1 < 2 < 4 < 3 < 5

Let’s try to make some 2-3 trees

Surely this one is bad too, right?

Let’s try to make some 2-3 trees

Surely this one is bad too, right?
This one is ok

Let’s try to make some 2-3 trees

This one?

Let’s try to make some 2-3 trees

This one?
No, not all subtrees have the same height

(This is a BST though)

Let’s try to make some 2-3 trees

Last one I promise. Is this a 2-3 tree?

Let’s try to make some 2-3 trees

Last one I promise. Is this a 2-3 tree?
Yes nothing wrong here

The only 2-3 trees

Only 2-3 tree with a 3-node root Only 2-3 tree with a 2-node root

Can you see why?

The 2-3 trees from part 1. Is Bruno right?

The 2-3 trees from part 1. Is Bruno right?

Bruno is wrong. Recall the general structure of a 2-3 tree

Greatest element always in rightmost leaf

T –> v

P Q

P,Q are 2-3 subtrees where
- P < v < Q

T –>

P R

P,Q,R are 2-3 subtrees where
- P < v1< Q < v2 < R

Q

 v1 v2

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

15,21

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

15,21

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,15,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,15,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle Ur CPU core

fixing ur broken tree

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,15,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

21

The nodes split (out of fear)

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

21

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

15

21

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

15

21,24

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

15

21,24

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,24

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,24

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,24,26

15

A 4-node…

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,24,26

15

A 4-node…

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,24,26

15

A 4-node… “pull it up”

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21,26

15

A 4-node… “pull it up”

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

15

A 4-node… “pull it up”

24

26

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

15,24

A 4-node… “pull it up”

26

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

15,24

26

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,3,7

15

21

15,24

26

Pull up the 3

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

3,15,24

26

Pull up the 3
Split the node

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0

15

21

3,15,24

26

Pull up the 3
Split the node

7

Now the root is a 4-node, so
we need to keep pulling up

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0

15

21

3,15,24

26

Pull up the 3
Split the node

7

Now the root is a 4-node, so
we need to keep pulling up

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0

15

21

3,24

26

Pull up the 3
Split the node

7

Now the root is a 4-node, so
we need to keep pulling up

15

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26

Pull up the 3
Split the node

7

Now the root is a 4-node, so
we need to keep pulling up

15

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

267

15

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26,287

15

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26,287

15

24

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26,28,297

15

24

Pull up by middle

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26,297

15

24,28

Pull up by middle
Split the node

Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

297

15

24,28

Pull up by middle
Split the node

26

LLRB Trees, what are they?

Types of LLRB inserts

Always insert in a red node

Types of LLRB inserts

Always insert in a red node

Types of LLRB inserts

Always insert in a red node

Types of LLRB inserts

Always insert in a red node

Types of LLRB inserts

Always insert in a red node

Insert: 15,21,7,24,0,26,3,28,29

Insert: 15,21,7,24,0,26,3,28,29

15

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

24

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

0

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

0

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

0 26

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

0 26

Oh no! Right red child, treat as red right insert

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

21

7
24

0 26

Oh no! Right red child, treat as red right insert

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

0

26

Oh no! Right red child, treat as red right insert

24

Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black

15

217

0

26

Oh no! Right red child, treat as red right insert

24

Insert: 15,21,7,24,0,26,3,28,29

15

217

0

26

24

Insert: 15,21,7,24,0,26,3,28,29

15

217

0

26

24

3

Insert: 15,21,7,24,0,26,3,28,29

15

217

0

26

24

3

Two reds in a row (BAD)
Treat as red insert under red parent

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
Two reds in a row (BAD)
Treat as red insert under red parent

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
Two reds in a row (BAD)
Treat as red insert under red parent

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
Another Two reds in a row (BAD)
Treat as red insert under red parent

Rotate right at 24

Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Another Two reds in a row (BAD)
Treat as red insert under red parent

swap(15,24)

Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Another Two reds in a row (BAD)
Treat as red insert under red parent

Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Another Two reds in a row (BAD)
Treat as red insert under red parent

Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

28

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

29

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

29

Insert: 15,21,7,24,0,26,3,28,29

15

2170

26

243

28

29

rotateleft(24)

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
28

29

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
28

29

Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
28

29

Bonus: LLRB Hard to Understand

LLRB trees are “the same as” to 2-3 trees

Exercise: Compare the insert trace of the 2-3 tree vs the LLRB Tree

Notice how red nodes == 3-nodes!

15

21

70

26

24

3
28

29

0
21

3

297

15

24,28

26

Intuition: I swap the deleted node up to the root

0 21

3

297

15

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

0 21

3

29_

15

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

0 21

_

293

15

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

0 21

15

293

_

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root

0 21

15

293

_

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root

0 21

15

293

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root, merge children going downward

0 21

15

293

24,28

26

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root, merge children going downward

0 21

15,24,28

293 26

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root, merge children going downward, lastly, fix any 4 node by pulling up

0,3 21

15,24,28

2926

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root, merge children going downward, lastly, fix any 4 node by pulling up

0,3 21

15,28

2926

24

Intuition: I swap the deleted node up to the root (let _ be deleted)

 Delete root, merge children going downward, lastly, fix any 4 node by pulling up

0,3 21

15

2926

24

28

Deletion in LLRB is quite hard..

15

21

70

26

24

3
28

29

Idea: Use equivalence between LLRB and 2-3 trees

0 21

3

297

15

24,28

26

Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree

15

21

70

26

24

3 28

29

Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree

0 21

3

297

15

24,28

26

Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree

0,3 21

15

2926

24

28

Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree

24

213 26

15 28

29

0,3 21

15

2926

24

28

0

Keep things simple :)

The definition with t = 1

- Every node other than the root has at least 1 key. Every internal node has at
least 1 children. The root must have at least 1 key

- Every node contains at most 2 values and 3 children

This is a 2-3 tree

The definition with t = 2

- Every node other than the root has at least 2 key. Every internal node has at
least 2 children. The root must have at least 1 key

- Every node contains at most 3 values and 4 children

This is a 2-3-4 tree! How many 2-3-4 trees for {1,2,3,4,5}?

2-3-4 trees of {1,2,3,4,5}

2-3-4 trees of {1,2,3,4,5}

2-3-4 trees of {1,2,3,4,5}

2-3-4 trees of {1,2,3,4,5}

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + (max # of children) Th-1

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h

And since each node has at most (2t - 1) keys..

To find max # keys, first find max # nodes.

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h

And since each node has at most (2t - 1) keys..

Max keys = (2t - 1) Th = (2t)h+1 - 1 Exercise: Confirm this

To find min # keys, root can have at the very least, 1 key

Min= 1 +

To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Min= 1 + 2(..)

To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Min= 1 + 2(t + grandchildren + grand-grandchildren + …)

To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Min= 1 + 2(t + t2 + grand-grandchildren + …)

To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Each of those children have at the very least (t - 1) keys

Min= 1 + 2(t + t2 + t3 + … + th) (t - 1)

To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Each of those children have at the very least (t - 1) keys

Min= 1 + 2(t + t2 + t3 + … + th) (t - 1) = 2th -1

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Suppose we kno

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

nodes in a path = (# black nodes) + (# red nodes)

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)

 ≥ (# black nodes)

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)

 ≥ (# black nodes)

So lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

lRMAX ≤ ⌊(lmax - 1)/2⌋

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉

lRMAX ≤ ⌊(lmax - 1)/2⌋

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉
So,

lmax / lmin ≤ 1 + lRMAX / lB ≤

lRMAX ≤ ⌊(lmax - 1)/2⌋

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉
So,

lmax / lmin ≤ 1+ lRMAX / lB ≤ 1 + ⌊(lmax - 1)/2⌋ / ⌈(lmax / 2)⌉

lRMAX ≤ ⌊(lmax - 1)/2⌋

lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉
So,

lmax / lmin ≤1 + lRMAX / lB ≤ 1 + ⌊(lmax - 1)/2⌋ / ⌈(lmax / 2)⌉ ≤ 1 + 1 = 2

lRMAX ≤ ⌊(lmax - 1)/2⌋

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Every red node has two black children, so this a ratio of ⅓

How about black nodes?

Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Every red node has two black children, so this a ratio of ⅓

A black node can have two red children, so at best our ratio is ⅔

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2 + (1 root node)

(height of left/right trees differs by at most 1)

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2 + (1 root node)

(height of left/right trees differs by at most 1)

This is the fibonacci number!

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2 + (1 root node)

(height of left/right trees differs by at most 1)

This is the fibonacci number! Th = Fh - 1

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2 + (1 root node)

(height of left/right trees differs by at most 1)

This is the fibonacci number! Th = Fh - 1 < ch for some constant c

Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2 + (1 root node)

(height of left/right trees differs by at most 1)

This is the fibonacci number! Th = Fh - 1 < ch for some constant c

Since, Th = n , we have ch < n so h = O(log n)

