
PSO 7
Trees, Trees, Trees, etc.



Midterm Tomorrow

Please make sure to go to your assigned room!

Get some sleep
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Today on the agenda… 

- 2-3 trees
- LLRB Trees

- Insertion
- Deletion

- B Trees
- RB Trees facts
- AVL Trees
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- T empty
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- P,Q have the same height
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First, what is a 2-3 tree?

T is a 2-3 tree if:

- T empty
- T is a 2 node
- T is a 3 node

T –>

P R

P,Q,R are 2-3 subtrees where
- P,Q have the same height
- P < v1< Q < v2 < R

Q

 v1     v2



Let’s try to make some 2-3 trees

Is this a 2-3 tree?



Let’s try to make some 2-3 trees

Is this a 2-3 tree?
No the root and inner node 
is missing its left child



Let’s try to make some 2-3 trees

How about this one?



Let’s try to make some 2-3 trees

How about this one?
No, 

1 < 2 < 4 < 3 < 5



Let’s try to make some 2-3 trees

Surely this one is bad too, right?



Let’s try to make some 2-3 trees

Surely this one is bad too, right?
This one is ok



Let’s try to make some 2-3 trees

This one?



Let’s try to make some 2-3 trees

This one?
No, not all subtrees have the same height

(This is a BST though)



Let’s try to make some 2-3 trees

Last one I promise. Is this a 2-3 tree?



Let’s try to make some 2-3 trees

Last one I promise. Is this a 2-3 tree?
Yes nothing wrong here



The only 2-3 trees

Only 2-3 tree with a 3-node root Only 2-3 tree with a 2-node root

Can you see why?



The 2-3 trees from part 1. Is Bruno right?



The 2-3 trees from part 1. Is Bruno right?

Bruno is wrong. Recall the general structure of a 2-3 tree

Greatest element always in rightmost leaf

T –>      v

P Q

P,Q are 2-3 subtrees where
- P < v < Q

T –>

P R

P,Q,R are 2-3 subtrees where
- P < v1< Q < v2 < R

Q

 v1     v2



Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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This is now a 4-node, need to fix.
Intuition: Pull up by the middle
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,15,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle Ur CPU core 

fixing ur broken tree
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This is now a 4-node, need to fix.
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Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7,21

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

21

The nodes split (out of fear)



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

7

This is now a 4-node, need to fix.
Intuition: Pull up by the middle

15

21

15
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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7

15

21,24

15



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7
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21,24

15
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

15

A 4-node… “pull it up”
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Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7

15

21

15,24

A 4-node… “pull it up”

26



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,7
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21

15,24

26



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0,3,7
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15,24
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Pull up the 3
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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we need to keep pulling up
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

26

Pull up the 3
Split the node

7

Now the root is a 4-node, so 
we need to keep pulling up

15

24



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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24



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed
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Split the node



Insert: 15,21,7,24,0,26,3,28,29

Inserting in 2-3: Find leaf the element would be in, add it and split if needed

0 21

3

297

15

24,28

Pull up by middle
Split the node

26



LLRB Trees, what are they?



Types of LLRB inserts

Always insert in a red node



Types of LLRB inserts

Always insert in a red node



Types of LLRB inserts

Always insert in a red node



Types of LLRB inserts

Always insert in a red node
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Always insert in a red node
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15



Insert: 15,21,7,24,0,26,3,28,29

If root red, make it black
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Insert: 15,21,7,24,0,26,3,28,29

15

21

70

26

24

3
Another Two reds in a row (BAD)
Treat as red insert under red parent

Rotate right at  24
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Another Two reds in a row (BAD)
Treat as red insert under red parent

swap(15,24)



Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Another Two reds in a row (BAD)
Treat as red insert under red parent



Insert: 15,21,7,24,0,26,3,28,29

15

2170
26

243

Another Two reds in a row (BAD)
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29

rotateleft(24)
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Bonus: LLRB Hard to Understand

LLRB trees are “the same as” to 2-3 trees

Exercise: Compare the insert trace of the 2-3 tree vs the LLRB Tree



Notice how red nodes == 3-nodes!
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Intuition: I swap the deleted node up to the root
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      Delete root
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Intuition: I swap the deleted node up to the root (let _ be deleted)

      Delete root, merge children going downward
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Intuition: I swap the deleted node up to the root (let _ be deleted)

      Delete root, merge children going downward, lastly, fix any 4 node by pulling up
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Intuition: I swap the deleted node up to the root (let _ be deleted)

      Delete root, merge children going downward, lastly, fix any 4 node by pulling up

0,3 21

15,28

2926

24



Intuition: I swap the deleted node up to the root (let _ be deleted)

      Delete root, merge children going downward, lastly, fix any 4 node by pulling up

0,3 21

15

2926

24

28



Deletion in LLRB is quite hard.. 
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Idea: Use equivalence between LLRB and 2-3 trees
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Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree
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Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
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Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree
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Idea: Use equivalence between LLRB and 2-3 trees

Take the LLRB

1) Turn it into a 2-3 tree
2) Run the delete algorithm
3) Turn it back into a LLRB tree

24

213 26

15 28

29

0,3 21

15

2926

24

28

0

Keep things simple :) 



The definition with t = 1

- Every node other than the root has at least 1 key. Every internal node has at 
least 1 children. The root must have at least 1 key

- Every node contains at most 2 values and 3 children

This is a 2-3 tree



The definition with t = 2

- Every node other than the root has at least 2 key. Every internal node has at 
least 2 children. The root must have at least 1 key

- Every node contains at most 3 values and 4 children

This is a 2-3-4 tree! How many 2-3-4 trees for {1,2,3,4,5}?



2-3-4 trees of {1,2,3,4,5}



2-3-4 trees of {1,2,3,4,5}



2-3-4 trees of {1,2,3,4,5}



2-3-4 trees of {1,2,3,4,5}



To find max # keys, first find max # nodes. 

Let Th be be max # nodes in B-tree with degree t and height h



To find max # keys, first find max # nodes. 

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + (max # of children) Th-1
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To find max # keys, first find max # nodes. 

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1 

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h



To find max # keys, first find max # nodes. 

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1 

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h

And since each node has at most (2t - 1) keys..



To find max # keys, first find max # nodes. 

Let Th be be max # nodes in B-tree with degree t and height h

Tn = (1 root) + 2t Th-1 

Solving for this we get Th = 1 + 2t + (2t)2 + … + (2t)h

And since each node has at most (2t - 1) keys..

Max keys =  (2t - 1) Th = (2t)h+1 - 1 Exercise: Confirm this



To find min # keys, root can have at the very least, 1 key 

Min= 1 + 



To find min # keys, root can have at the very least, 1 key

Then, it has 2 children. 

Min= 1 + 2(..) 



To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children. 

Min= 1 + 2(t + grandchildren + grand-grandchildren + …) 



To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children. 

Min= 1 + 2(t + t2 + grand-grandchildren + …) 



To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Each of those children have at the very least (t - 1) keys  

Min= 1 + 2(t + t2 + t3 + … + th) (t - 1)



To find min # keys, root can have at the very least, 1 key

Then, it has 2 children.

Those children are internal, so they have at the very least t children.

Each of those children have at the very least (t - 1) keys  

Min= 1 + 2(t + t2 + t3 + … + th) (t - 1) = 2th -1



Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Suppose we kno



Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

# nodes in a path = (# black nodes) + (# red nodes)
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lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)



Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)

     ≥ (# black nodes)



Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

lmax = (# black nodes) + (MAX # red nodes)

lmin = (# black nodes) + (MIN # red nodes)

     ≥ (# black nodes)

So lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)



lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes



lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

lRMAX ≤ ⌊(lmax - 1)/2⌋



lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉

lRMAX ≤ ⌊(lmax - 1)/2⌋



lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes
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lmax / lmin ≤ 1 + (MAX # red nodes) / (# black nodes)

Suppose lB is # black nodes, lRMAX is MAX # red nodes

Since there are never consecutive red nodes,

Then, lB ≥ ⌈(lmax / 2)⌉
So,

lmax / lmin ≤1 + lRMAX / lB ≤ 1 + ⌊(lmax - 1)/2⌋ / ⌈(lmax / 2)⌉ ≤ 1 + 1 = 2

lRMAX ≤ ⌊(lmax - 1)/2⌋
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Red black tree facts

- Any two paths have the same number of black nodes
- There are never consecutive red nodes

Every red node has two black children, so this a ratio of ⅓

A black node can have two red children, so at best our ratio is ⅔ 
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Let Th denote the minimum size of an AVL tree of height h

What is the recurrence?

Th = Th - 1+ Th - 2  + (1 root node)

(height of left/right trees differs by at most 1)

This is the fibonacci number! Th = Fh - 1 < ch for some constant c

Since, Th  = n , we have ch < n so h = O(log n)


