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What is a BST?



Each node in the tree has

node.left <= node.val <= node.right 



Counting BSTs!

List all the N=2,3 trees



Counting BSTs

We use a recurrence to calculate work.. We can do the same for counting

Let Bi be the number of BSTs on i nodes

Base Cases?
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Insight: subtrees of BSTs are also BSTs

Q: Suppose I know there are i nodes in the left subtree and (n - i -1) nodes in the right 
subtree

How many BSTs?



Let Bi be the number of BSTs on i nodes

B0 = 1

B1 = 1

General Case?

Bn = 

Insight: subtrees of BSTs are also BSTs

Q: Suppose I know there are i nodes in the left subtree and (n - i -1) nodes in the right subtree

How many BSTs?

A: BiBn-i-1



Let Bi be the number of BSTs on i nodes

B0 = 1

B1 = 1

General Case?

Bn =  ∑i = 1
n -1BiBn-i-1

Insight: subtrees of BSTs are also BSTs

Q: Suppose I know there are i nodes in the left subtree and (n - i -1) nodes in the right subtree

How many BSTs?

A: BiBn-i-1 Sum over all possible 
values of i



Summary of How we counted

1. Recurrence: We set Bn = # bsts with n nodes
2. Base Case: B0,B1= 1 
3. Recursive Case (Bn): 

a. A root node can have i left children and (n - i - 1) right children



Summary of How we counted

1. Recurrence: We set Bn = # bsts with n nodes
2. Base Case: B0,B1= 1 
3. Recursive Case (Bn): 

a. A root node can have i left children and (n - i - 1) right children
b. If i left children, there are BiBn-i-1 possible BSTs



Bonus: A related problem

I am taking a walk on a graph, where I can only go right or up.

How many paths are there from (0,0) to (n,n) where I never go under the diagonal?



Insert(root,x):

If root == null: return x 

If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)



How does deletion work?



Deletion in a BST: Depends on # children

Basically, want to delete while keeping order

del(H)

del(A)

del(E)

B DB



`
Assume 1 child deletion swaps 
with successor



`
If 1 child deletion swaps with 
predecessor 





Linear Probing: If collision, check next box
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k h(k) = k mod 12

16 4

17 5

28 4

18 6

8 8

31 7

Which ones are in the right place?

Insert 16,17,8 first

Next, 28, 18, 31

I can enter 16,17,8 in any order



Load factor = 





Insertion order: 16, 17, 28, 18, 8, 31

k h(k) = k mod 12

16 4

17 5

28 4

18 6

8 8

31 7



Quadratic probing: 

i = i’th collision



Trying 16

h(16,0) = 16 + 02 mod 9 = 7

No collision



Trying 35

h(35,0) = 35 + 02 mod 9 = 



Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 1 mod 9 =  



Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 =



Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3 No Collision



Trying 10

h(10,0) = 10 + 02 mod 9 = 



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 =  



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 =  

 



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision
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Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 = 1 Collision

 



Merge sort: Divide until pairs/singles, then recombine



Quick Sort: Sort by pivot partitioning


