PSO 3

Exam this Friday. Topics are

Run time Expressions/Asymptotic Analysis
Array

Linked List

Stack n’ Queue

Trees

Heapify

SRS i

Slides made public for you!

justin-zhang.com/teaching/cs251 < Uploading the slides after the PSO here

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

V= @
1. Inserting an element in its sorted position. @

O(n)

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

- hewd p)L/\
2. Finding the smallest element in the list. -+l pr

- (1> - ous ook @ hew §

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

3. Finding the 3¢ - largest element in the list.

egkwed 30— (05
_
@tﬂ% g@Jn&q{\ﬂ’V\Mi N—J —@[/)’-7)>:9[/))

00 2202 3 gy

9 /[1] H dups = &)
lF ng d(/qls (’@(D

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

4. Finding the median in the list.

ol |]

— 6A(N) 1l
E []

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.
. Inserting an element in its sorted position.

. Finding the smallest element in the list.

. Finding the 3"? - largest element in the list.

- O N e

. Finding the median in the list.

(Binary Tree)
(1) A full binary tree cannot have which of the following number of nodes?

3
7
11
12

15

moa®x>

(Binary Tree)

(1) A full binary tree cannot have which of the following number of nodes?

A. 3
7
11
12

15

O 0w

Definition of a full binary tree?

mwy tree
o Cagn Nade s © or 2 thllre,

(Binary Tree)

(1) A full binary tree cannot have which of the following number of nodes?

A. 3
B. 7
C. 11

(D) 12

E. 15

Definition of a full binary tree?
Every node is either a
- leafor,

- inner node with two children

examples
“Omply O
) ® O

VR
nw@*lzgéo f;
g

What is the answer?
?o\\ Dia Yrge Caond Nave €1

¥ Nolos

How to proceed?

A

U b
e
©n (“nodes
N

4o

@

/%
&

\a

(2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have?

A
B.
C

D.
E.

-1 & O =

How to proceed?

Every answer is at most 7.. Just draw them all out!

(2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have?

A
B.
C

D.
E.

-1 & O =

How to proceed?

Every answer is at most 7.. Just draw them all out!

(3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree.

@frue

B. False

Thoughts?

[eat l 2 3
[’/]‘}Tfﬂo;/ O Q

(3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree.

A. True
B. False

If the thought isn’t a strong ‘yes’ then draw examples

(4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary
tree.

A. True

@ False

Definition of a complete binary tree?

‘EQ/QM nede o Child ren CX&@V} /Qg}— Tewe |
lask level (s Z@P}lmm@/@[[

éo\o S

d 2

(4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary
tree.

A. True
B. False

Definition of a complete binary tree?

- Every level of the tree except the last is complete

) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined.
r’j/‘

(A7 True

B. False

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

SN

Assume Queue interface Stacks]Cm} s lagkout
/
J— ! ! (V
- g = Queue.init ())
Ve ugs:
oo (o) {72) TL\/fSZL /7 ﬁfs}ﬁu}
- x = g.deqg()

- g.size ()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface
Implement Stack interface

- g = Queue.init () - s = Stack.init ()
- g.enqg(x) - S.push (x)
- x = g.deq() - X = s.pop()

- g.size ()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface def Stack.init ():

- g = Queue.init()
- g.eng(x)

- x = g.deq()

- g.size()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface

- g = Queue.init ()
- g.enqg(x)

- x = g.deqg()

- g.size()

def Stack.init () :
gl = Queue.init ()
g2 = Queue.init ()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface

- g = Queue.init ()
- g.enqg(x)
- x = g.deqg()
- dg.size() General Strat for these types of problems
- Fulfill conditions incrementally,
def Stack.init () : - When things break, fix them.
gl = Queue.init () - Occam’s razor

g2 = Queue.init ()

Example: Starting with the Simplest Push Impl.

1. Pushing an element to the stack takes no more than O(1) operations.

Push

Push
Push

A~ N N~
O O T v

N N N’ N

Push

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)

Push(b)

Push(c)
Push(d)

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)

Push(b)

Push(c)
Push(d)

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)
Push(b)
Push(c)
Push(d)

bc

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)
Push(b)
Push(c)
Push(d)

bcd

Adding a Pop: Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop? (use deq?)

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b) O O

Pop() #should pop b
Push(c)
Pop() # should pop ¢

~_]

T

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c) a

Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)
Push(b)
Pop() #should pop b
Push(c)
Pop() # should pop ¢

How to implement this?

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a) Push) P cd

Push(b)

Pop() #should pop b~ /o [1)
Push(c)

Q—‘ﬁ&m

Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)

Pop() #should pop b
Push(c) b
Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)
Push(b)
Pop() #should pop b
Push(c)
Pop() # should pop ¢

Pop():

If g2.size() > 0O:
Return 2.

Pushing after a pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)
Push(b)
Pop() #should pop b
Push(c)
Pop() # should pop ¢

Pop():

If g2.size() > 0: Jou,
Return g2:pp()

Pushing after a pop? Only pop if non-empty

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

q1
Push(a) abe
Push(b)
Pop() #should pop b
Push(c) c
Pop() # should pop ¢
g2

Push(x):
g1.enq(x)
if q2.size > 0: g2.deq()
g2.enq(x)

():
If g2.size() > 0O:
Return g2.pop()

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

q1
Push(a) abe
Push(b)
Pop() #should pop b
Push(c)
Pop() # should pop c
g2

Not exactly a stack, but...
this stack impl is “correct” for the first two rules!

Last requirement

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Push(b

)
)
Push(c)
Push(d)

Pop() #should pop d
Pop() # should pop ¢

Try our implementation as-is

Last requirement

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd

Push(a)

Push(b)

Push(c)
Push(d) d

Pop() #should pop d
Pop() # should po

Push(x):

g1.enq(x)
if q2.size > 0: g2.deq()

g2.enq(x)

Last requirement

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd
Push(a

Push(c
Push(d)

(a)
Push(b)
(c)

Pop() #should pop d
Pop() # should pop ¢

Pop():
If q2.size() > O:

Rﬁwnqlé%b

Last requirement: How do we get ¢?

Pushing an element to the stack takes no more than O(1) operations.

Popping from the stack takes no more than O(1) operations if performed after a push.

W N =

Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Pop() #should pop d

Pop() # should pop c

Pop():
If g2.size() > 0O:
Return g2.pop()

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd

Pop() #should pop d
Pop() # should pop c

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push

3. Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

Pop() #should pop d
Pop() # should pop c

while q1.size > 0: 4, ,
seen = q1.pgp()
g2.enq(seen)
#how to get c?

abcd

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

while q1.size > 0:
seen = q1.pop()
g2.enq(seen)
Ifq1.size() == 1:

res = seen

Last requirement: How do we get ¢?

Pushing an element to the stack takes no more than O(1) operations.

Popping from the stack takes no more than O(1) operations if performed after a push

W N =

Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

abcd

Pop() #should pop d
Pop() # should pop c g2

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

W N =

Pop() #should pop d
Pop() # should pop c

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

while q1.size > 0O:

seen = q1.pop()

g2.enq(seen)

If q1.size() == 1:
res = seen

[s

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

W N =

Pop() #should pop d
Pop() # should pop c

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

while q1.size > 0O:

seen = q1.pop()

g2.enq(seen)

If q1.size() == 1:
res = seen

T ey

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

W N =

Pop() #should pop d
Pop() # should pop c

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

while q1.size > 0O:

seen = q1.pop()

g2.enq(seen)

If q1.size() == 1:
res = seen

abc

[e

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

W N =

Pop() #should pop d
Pop() # should pop c

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

while q1.size > 0O:

seen = q1.pop()

g2.enq(seen)

If q1.size() == 1:
res = seen

abc

) ¢

[seen=c¢c

Cool we have our result!
But our “stack” is ugly now.. How do we push/pop again?

Philosophy of Data Structures: Culling Chaos

Sure fire design philosophy of data structures is maintaining Invariants
If | can make sure my data structures always look the same then easy to...

- Satisfy time efficiencies
- Write elegant pseudocode
- Prove/guarantee your impl. is efficient/correct

Example?

Invariant for our stack? After pop pop

Sfuglc hol e Ol ¢
a1l
we want..
abc
g2
[seen=c]
Push(x): PushPop():
g1.enq(x) If g2.size() > 0:
if q2.size > 0: q2.deq() Return q2.pop()

g2.enq(x)
N

Invariant for our stack? After pop pop

a1l q1
% bc
we want.. —
abc
> 42
seen = ¢ PopPop():
/I code for getting pop element
Push(x): // TODO: code for fixing stack

q1.enq(x) J:

if g2.size > 0: zruos g2.pop()

g2.enq(x)

S

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. g2.enq(seen)
if q2.size > 0: zruos
g2.enq(x)

Invariant for our stack? After pop pop

a1l
we want..
abc
>
_ PopPop():
[seen=¢ /I code for getting pop element
1. qg1.deq()

Push(x): 2. Setql=q2
q1.enq(x) 3. qg2.enq(seen))
if g2.size > 0: qzruos g2.pop()
g2.enq(x)

S

Invariant for our stack? After pop pop

q1

S

bc

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. ql.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. g2.enq(seen)
if q2.size > 0: zruos
g2.enq(x)

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=qg2

q1.enq(x) 3. g2.enq(seen)

if q2.size > 0: zruos

g2.enq(x)

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. q2.enq(seen)
if q2.size > 0: zruos
g2.enq(x)

We don’t have to change our previous push/pop impl.!

a1l
albc
c
g2
[seen=c]
Push(x): PushPop():
g1.enq(x) If g2.size() > 0:
if g2.size > 0: g2.deq() Return q2.pop()

g2.enq(x)
N

Question 4

(Review)
(1) The big-O closed-form runtime expression T'(n) for the recurrence T'(n) = 3T(n/3) + n is (assume n
is a power of 3 and T'(1) = 1)

A. O(n)
. O(nlogn)
. O(n®logn)
. O({nlogn)
. O(n{/logn)

moaw

‘

(2) Two algorithms are developed based on the following template

NearRY R

: function A(n : Z5, power of 2)

if n =1 then
return 1
end if

return A(n/2) + A(n/2)

- end function

The missing part requires F(n) time in Algorithm A;, and requires G(n) time in Algorithm Ay, where
F(n) and G(n) are two functions of n.

If F(n) = 6(G(n)), then A,(n) = 0(Az(n)).

The above statement is

A. True

B. False

C. Possibly true/ Possible false
(3) Consider a sorted circular doubly-linked list where the head element points to the smallest element
in the list. What is the time complexity to find the largest element in the list?

A.0(1)

B. O(logn)

C. O(n)

D. O(nlogn)

(1) The big-O closed-form runtime expression 7'(n) for the recurrence 7'(n) = 37'(n/3) + n is (assume n
is a power of 3 and 7'(1) = 1) -

C. O(n 3logn)
D. O(y/nlogn)

E. O(n¥logn) ‘/[CyO: C?[V%/} +

& O(nlos)
h/: CisSg CQ@(})—VV\J/

Tl y=CT()+r
C O Cﬂ/@ém)

(1) The big-O closed-form runtime expression 7'(n) for the recurrence 7'(n) = 37'(n/3) + n is (assume n
is a power of 3 and 7'(1) = 1)

A. O(n)

B. O(nlogn) Same as T(n) = 2T(n/ 2) + n,
C. O(n®logn) Solve using tree method.

D. O(y/nlogn)

E. O(n/logn) Exercise

For constant k, show T(n) =kT(n/k)+ nis
O(nign)

(2) Two algorithms are developed based on the following template

. function AQ/Z Z>, power of 2)

if n=1 DINGrySaroh
return 1 P)6{//
end if bC //VV@ o/

9%,

h Cﬂ)
return A(n/2) + A(n/2) [5 4 F

: P 2 /
. end function W IC %f 7tfﬂ In 7

(Ghorn Linsearsh CA72p

The missing part requires 1-= n) time in Algorithm .Al and requires G(n) time in Algorithm A2, where
F(n) and G(n) are two fuiictions of n. == =

If F(n) = O(G(n)), then A;(n) = 60(As(n)).
14
The above statement i [W
N,)
A. True Y\q C/OCV)
B. False
C. Possibly true/ Possible false

nt &

mn7wﬂb\\ W = Oéf{v

l@n ?4 g{\ Z [’%) }uf lo% 1h ",t(/vn-t)
L

= peln-D xln2yr .
7 b 4

n
N n Y =0

1: Tunction A(n : Z>; power of 2)
2: if n =1 then

3 return 1

4: end if

5 r

3 return A(n/2) + A(n/2)

i
7: end function

If F(n) =©O(G(n)), then A;(n) = 0(As(n)).

Tree method:

Recurrence: 1(n) = 2 Z‘/’/fz ~+ FU)) é
Tree: TCQ)T 4/ /4 > — / éh)

Cost per level i: Z‘/]:(ﬂ/z() }’(4\)\
00k (g () FL")
7\ VRN
: 9n . _
Sum Z(/)Z’ZV]/ZF) F(ﬂé) o
¢

(=

—_—

1: Tunction A(n : Z>; power of 2)
2 if n =1 then

3: return 1

4: end if

F or G(n)

(

3: return A(n/2) + A(n/2)
7: end function

If F(n) =0(G(n)), then A,(n) = O(As(n)).

Fln) GEY
Tree method: / \ wis:

h, 2

s\ /) /\J/l

Cost per level i: Z{F(n/zf) Zi&(n/zi

Levels: Ig n

2'F("%) 26("%)

: s Lo
If F(n) = ©(G(n)), then A;(n) = O(Ay(n)). 22 F('%) ZZ G("%)

wis,
(9n , 1ah
‘ N,)
Zz F('%:) €0 ZZ‘G(%‘)
i i=
This is true if .. a9 tlte C/él[d*g +7ﬁ>

~This 15 Frve It o EO00)))7#@[9))669/?)

wis

——

Z%F %) 59(??6“6))
i Bl
—
TLus I$ ‘}/JL I'p $or each | =, Z)=,lgn
i=(n,\ - :
éﬂij 0 (7//7("’/7:))

And this is true if..

wis '

e

izl

fz‘ﬂ"@) e@(fz‘&(%')
This 15t of o eah 1 =12, 1pm

2F"%) < 8(2'0(7)
And fhs 15 true

F Z' C@ ("/!)

Which is true by our if condition! If F(n) (o)) Ehen Ailn) =041

(3) Consider a sorted circular doubly-linked list where the head element points to the smallest element
- A gy EEEC Ty e— 3 :
in the list. What 1s the time complexity fo find the largest element in the list?

\@Jowy
B. O(logn)
C. O(n)

D. O(nlogn) |)—> @/>@

