$ext{CS251}$ - Data Structures and Algorithms Spring 2024

PSO 3, Week 4

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points to the smallest element in the list. Provide the asymptotic complexity in big- Θ with a brief explanation (including assumptions and analysis for each case, if there is more than one) for the following operations.

- 1. Inserting an element in its sorted position.
- 2. Finding the smallest element in the list.
- 3. Finding the 3^{rd} largest element in the list.
- 4. Finding the median in the list.

Question 2

(Binary Tree)

 A. 3 B. 7 C. 11 D. 12 E. 15 (2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have? A. 3 B. 4 C. 5 D. 6 E. 7 (3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree. A. True B. False (4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary tree. A. True B. False (5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined. A. True B. False 	(1)	A full binary tree cannot have which of the following number of nodes?
A. 3 B. 4 C. 5 D. 6 E. 7 (3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree. A. True B. False (4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary tree. A. True B. False (5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined. A. True] (I	3. 7 C. 11 O. 12
 A. True B. False (4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary tree. A. True B. False (5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined. A. True] [[A. 3 B. 4 C. 5 D. 6
A. True B. False (5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined. A. True	I	A. True
A. True	tre	ee. A. True
	(5)) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined. A. True

Question 3

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

- 1. Pushing an element to the stack takes no more than O(1) operations.
- 2. Popping from the stack takes no more than O(1) operations if performed after a push.
- 3. Popping from the stack takes no more than O(n) operations if performed after another pop, where n is the number of elements in the data structure.

Question 4

(Review)

- (1) The big-O closed-form runtime expression T(n) for the recurrence T(n) = 3T(n/3) + n is (assume n is a power of 3 and T(1) = 1)
- A. O(n)
- B. $O(n \log n)$
- C. $O(n^3 \log n)$
- D. $O(\sqrt[3]{n}\log n)$
- E. $O(n\sqrt[3]{\log n})$

4

(2) Two algorithms are developed based on the following template

The missing part requires F(n) time in Algorithm \mathcal{A}_1 , and requires G(n) time in Algorithm \mathcal{A}_2 , where F(n) and G(n) are two functions of n.

If
$$F(n) = \Theta(G(n))$$
, then $A_1(n) = \Theta(A_2(n))$.

The above statement is

- A. True
- B. False
- C. Possibly true/Possible false
- (3) Consider a sorted circular doubly-linked list where the head element points to the smallest element in the list. What is the time complexity to find the largest element in the list?
 - A. O(1)
 - B. $O(\log n)$
 - C. O(n)
 - D. $O(n \log n)$

4