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… kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels
3. Derive the sum and closed form
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1. Draw out the tree
2. Find the cost at the ith 
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closed form

Cost at first level: 
Cost at second level:
Cost at ith level: # levels:

T(n) = T(rk) -> logcn levels.
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What is the problem with a tree?



We usually like recurrences of this form

E.g question 1 recurrences

Solution: Variable change! But to what value?
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We usually like recurrences of this form

Change variable: m = 
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We usually like recurrences of this form

Change variable: m = log n
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We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = 

e)
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T(M) -> S(m) = 2 S(M1) + m.
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We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = T(2m)



We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = T(2m)

This is just merge sort! O(mlogm) = O(log n * (log log n)) 
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Naive n^2 strategy?

(2)=8



What can we do in nlogn time?



What can we do in nlogn time? Sort

Ok now that elements are sorted,

What do we do?
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Ok now that elements are sorted,

What do we do?

Idea: find pairs smarter
# ↑
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What can we do in nlogn time? Sort

Ok now that elements are sorted,

What do we do?

Idea: find pairs smarter

Hold a left,right pointer, calculate sum

If sum > x: move right pointer 

If sum < x: move left pointer 
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#g(A) :

call (2:3)+A ↑
T(n) = [T(n-1) + n
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