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Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n
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Warning: Solving this T(n) using iterationsis a
bad idea!

... kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels

3. Derive the sum and closed form
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(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n
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Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn
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(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form

S(n) = aS(n/P) + f(n),

E.g question 1 recurrences

Solution: Variable change! But to what value?
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Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — C{S(n/ﬁ) & f(n),

Change variable: m = log n T(2-'1'1‘1.> - 2T(2m/2) + m.

Change equation: S(m) = T(2™)
S(m) =25(m/2) + m,

This is just merge sort! O(mlogm) = O(log n * (log log n))



Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is exactly x.
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Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another

integer x, determines whether or not there exist two elements in S whose sum is exactly z.

S
What can we do in nlogn time? Sort
| 2 3 ﬂ
Ok now that elements are sorted, (: Iy A
What do we do? [ NERE AN S

|[dea: find pairs smarter
Hold a left,right pointer, calculate sum
If sum > x: move right pointer

If sum < x: move left pointer









Question 4

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

1. Inserting an element in its sorted position.

2. Finding the smallest element in the list.

3. Finding the 3"¢ - largest element in the list.

4. Finding the median in the list.






