PSO 2

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(z) = 1
for any = < 1.)

(1) T(n) =2T(n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

Warning: Solving this T(n) using iterationsis a
bad idea!

... kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels

3. Derive the sum and closed form

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

N

1. Draw out the tree

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

/ \ 1. Draw out the tree

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

N
/ \ 1. Draw out the tree
/4

V/n/4 V/n/4

y \ Y \

/n/16 V/n/16 /n/16 \/n/16

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

PN

/4 Vn/4 2. Find the cost at the ith
VAN PR level and the number
B ST ST T of levels

Cost at first level:
Cost at second level:

Cost at ith level: # levels:

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7T'(z) = 1
for any x < 1.)

(1) T(n) = 2T (n/4) + v/n
(2) T(n)=T(n/2)+T(n/3)+T(n/6)+n

PN

V/n/4 Vn/4
/ \ / \
\/n/16 \/n/16 \/n/16 \/n/16

3. Derive the sum and
(ost at ith level : Jo closed form

Number o f lavels: [Og A

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

Draw out the tree

Find the cost at the ith
level and the number
of levels

Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

n

TN

n/2 n/6 n/3

1. Draw out the tree
2. Find the cost at the ith
level and the number

of levels
3. Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

n/2 n/6 n/3
/ l \ / \ \ / I \ 1. Draw out the tree
2. Find the cost at the ith
n/A n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9 level and the number
of levels

3. Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

2. Find the cost at the ith
level and the number
of levels

n/4 n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9

Cost at first level:
Cost at second level:
Cost at ith level: # levels:

oy

QI 55 g [0) ._.[9‘.0 <4 lg.

(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

n/2 n/6 n/3
n/4 n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9

(o5t at itk level N
Numbor o f lavels’ OClyn)

3. Derive the sum and
closed form

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

What is the problem with a tree?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form

S(n) = aS(n/P) + f(n),

E.g question 1 recurrences

Solution: Variable change! But to what value?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) + f(n),

Change variable: m =

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) = aS(n/ﬂ) & f(n),

Change variable: m = log n Pla™] = 2T(2m/2) + m.

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) & f(n),

Change variable: m = log n Pla™] = 2,T(27n/‘2) + m.

Change equation: S(m) =

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) & f(n),

Change variable: m = log n T(Q"m.) - 2T<2m/2) + m.

Change equation: S(m) = T(2™)
S(m) =25(m/2) + m,

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — C{S(n/ﬁ) & f(n),

Change variable: m = log n T(2-'1'1‘1.> - 2T(2m/2) + m.

Change equation: S(m) = T(2™)
S(m) =25(m/2) + m,

This is just merge sort! O(mlogm) = O(log n * (log log n))

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is exactly x.

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is exactly x.

Naive n"2 strategy?

S X
JJg) A EME 3

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is exactly x.

Naive n"2 strategy? S

IFAEVEP L’] 5

C1.5), CL2), 0,3,
(5,2), (5,3, (64)
(z,2) , (2,9)
(3,9)

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is exactly x.

What can we do in nlogn time?

S X
IJg) A EME 3

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another

integer x, determines whether or not there exist two elements in S whose sum is exactly z.

S

What can we do in nlogn time? Sort

| 73 ﬂ
Ok now that elements are sorted, (: .9, T e

What do we do? E), 2, 3,4 .5]

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another

integer x, determines whether or not there exist two elements in S whose sum is exactly z.

S
What can we do in nlogn time? Sort
| 2,3 ﬂ
Ok now that elements are sorted, (: 29, A
What do we do? E NERE AN S

|[dea: find pairs smarter

Question 3

(Algorithm Design) Describe a ©(nlogn) algorithm that, given a set S of n integers and another

integer x, determines whether or not there exist two elements in S whose sum is exactly z.

S
What can we do in nlogn time? Sort
| 2 3 ﬂ
Ok now that elements are sorted, (: Iy A
What do we do? [NERE AN S

|[dea: find pairs smarter
Hold a left,right pointer, calculate sum
If sum > x: move right pointer

If sum < x: move left pointer

Question 4

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

1. Inserting an element in its sorted position.

2. Finding the smallest element in the list.

3. Finding the 3"¢ - largest element in the list.

4. Finding the median in the list.

