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All of us after next week
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Announcements

1. Fill out the instructor feedback surveys (ty 40% of you)

2. Last review session on Friday (time TBD, location TBD (existence TBD))

3. No OH next week
a. I will NOT be on duty but..

b. I might happen to be sitting around the commons from 12-2PM Sat,Sun,Mon,Tues

c. I might be open to answering any questions if they happen to be asked

d. I might be hungover



But first..
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Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time
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Whichever moves P the least amount



The example from last time

We mismatched on target X 
The last occurrence of pattern X

T O O X X X X O O O

P O X X X X O O O

Move P (to align target X with pattern X) OR (one after target mismatch)
Whichever moves P the least amount

Last note: If there is no last occurrence of the target 
mismatch, default to one after mismatch
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View this at your leisure – a longer example

The green is a 
comparison made 

c not in the pattern
We move one after
(In this case, big jump)
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Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

⑯

Sektella⑤
(If not at leaf continue recursively)



bst for X

=>
best

fort for x
-> ast for y

Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

⑯
detelle

:① · ⑤
Deletion in KD-trees is the same,
except you choose successor/predecessor based on dimension
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50,20 bst for X

#
Now lets delete (40. 10)

2) Swap with (40, 10)

[Think about why this preserves k-d order]
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bst for X

-bestfor y

-

bst for X

↳st for y

Now lets delete (00,60).

Left as
Exercise

NOTE : If no successors find a predecessor instead and vicelversa.



I’m going to ignore this question and go over how we insert into a quad tree.
for now
1
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What is the takeaway of the example for this question ?
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Poll

What do YOU want to see at the last practice session?

- Asymptotic analysis
- Graph problems 

Do you want us to keep doing Mult. Choice or do more Free response-y questions?


