
PSO 14
K-D Trees, Point Trees

All of us after next week

justin-zhang.com/teaching/CS251

Announcements

1. Fill out the instructor feedback surveys (ty 40% of you)

2. Last review session on Friday (time TBD, location TBD (existence TBD))

3. No OH next week
a. I will NOT be on duty

Announcements

1. Fill out the instructor feedback surveys (ty 40% of you)

2. Last review session on Friday (time TBD, location TBD (existence TBD))

3. No OH next week
a. I will NOT be on duty but..

b. I might happen to be sitting around the commons from 12-2PM Sat,Sun,Mon,Tues

c. I might be open to answering any questions if they happen to be asked

d. I might be hungover

But first..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a
 The last occurrence of pattern a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount – in this ex. We move one after mismatch

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time

The example from last time

T O O X X X X O O O

P O X X X X O O O

The example from last time

Mismatch here

T O O X X X X O O O

P O X X X X O O O

The example from last time

We mismatched on target X
The last occurrence of pattern X

T O O X X X X O O O

P O X X X X O O O

Move P (to align target X with pattern X) OR (one after target mismatch)
Whichever moves P the least amount

The example from last time

We mismatched on target X
The last occurrence of pattern X

T O O X X X X O O O

P O X X X X O O O

Move P (to align target X with pattern X) OR (one after target mismatch)
Whichever moves P the least amount

Last note: If there is no last occurrence of the target
mismatch, default to one after mismatch

View this at your leisure – a longer example

The green is a
comparison made

View this at your leisure – a longer example

The green is a
comparison made

c not in the pattern
We move one after
(In this case, big jump)

e bst for X

-
=

bst for X

- - bst for y

- - -

bst for X

=>
best

fort for x
- ↳st for y

Now lets insert (70 ,50)

-

>
bst

to fort fort
- ↳st for y

Now lets insert (70 ,50)

-

>bottet fort fort
- ↳st for y

Now lets insert (70 ,50)

-> for

t fort
- ↳st for y

Now lets insert (70 ,50)

-

=>fort fort

⑳at
estfr

Now lets insert (70 ,50)

2d free

30 free

⑭
- /- Splitbyx

Oc

ty/splitbay
-tH1 spltbyz

bst for X

-bestfor y

-

> bst for X

-> ast for y

Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

Delete(lo):

bst for X

=>
best

fort for x
-> ast for y

Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

·eltello:

bst for X

=>
best

fort for x
-> ast for y

Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

⑯

Sektella⑤
(If not at leaf continue recursively)

bst for X

=>
best

fort for x
-> ast for y

Now lets delete (40. 10)

Recall deletion in normal BST

· Find predecessor/successor leaf to replace
ex :

⑯
detelle

:① · ⑤
Deletion in KD-trees is the same,
except you choose successor/predecessor based on dimension

bst for X

bst for y
-

-

bst for X

↳st for y

Now lets delete (40. 10)

1) Find successor fore

#my bstfor fort fort
↳st for y

Now lets delete (40. 10)

2) Swap with (40, 10)

[Think about why this preserves k-d order]

50,20 bst for X

#
Now lets delete (40. 10)

2) Swap with (40, 10)

[Think about why this preserves k-d order]

=>
Now lets delete (40. 10)

2
.
2)Notat leaf yet

,
find successor in y = 10 and swap.

ind but for X

#
Now lets delete (40. 10)

2
.
2)Notat leaf yet

,
find successor in y = 10 and swap.

bst for X

-bestfor y

-

bst for X

↳st for y

Now lets delete (00,60).

Left as
Exercise

NOTE : If no successors find a predecessor instead and vicelversa.

I’m going to ignore this question and go over how we insert into a quad tree.
for now
1

(100, 100)
·Suppose root

. pt= null

root
. region= 10,0, 100, 100)

root
- children = [] ⑭

1) Insert (35,40) Glo
...

(100, 100)
·Suppose root

. pt= null

root
. region= 10,0, 100, 100) ⑭

root
. children= []

1) Insert (35,40)

Co
,)

(100, 100)

root
. pt=.(35,40)

root
. region= 10,0, 100, 100)

1) Insert (35,40) root
. children= [] ①

(100, 100)

1) Insert (35,40) root
. pt=.(35,40)

root
. region= 10,0, 100, 100)

2) Insert (50, 10) root
. children= [] ①

(100, 100)

1) Insert (35,40) root
. pt=.(35,40)

root
. region= 10,0, 100, 100)

2) Insert (50, 10) root
. children= [] ⑪Co

,)

-

T (100, 100)

1 2

1) Insert (35,40) root
. pt=.(35,40) ⑪toroot
. region= 10,0, 100, 100) -

2) Insert (50, 10) root
. children= [] /III %

①G

-
g
m

T (100, 100)

I Z

1) Insert (35,40) root
. pt=.(35,40)

root
. region= 10,0, 100, 100)

2) Insert (50, 10) root
. children= [] *↑

I

Da

- m

D
What does this intuitively-

T (100, 100)

1 2

1) Insert (35,40) root
. pt=.(35,40)

root
. region= 10,0, 100, 100)·2) Insert (50, 10) root
. children= [] ↑

- m

insertroot into the quadrant it belongs

Metoriginal root pt to null)

T (100, 100)

13

1) Insert (35,40) -T2) Insert (50, 10) s
↑

- m

insertroot into the quadrant it belongs
- up

· we bo this on the
second insert !

· still need to insert 150, 10)

T (100, 100)

13

1) Insert (35,40)

2) Insert (50, 10) %↑

⑪
data

l
-

T (100, 100)

13

1) Insert (35,40) -
↑

&

2) Insert (50, 10) %
⑪
da
↑

l · insert into quadrants

-

T (100, 100)

13

1) Insert (35,40) - &

2) Insert (50, 10) %↑

⑪
da

m ↑
· insert into quadrants
o this node has no children,

- need to further subdivide
,
then more into new subquadrant

T (100, 100)

13

1) Insert (35,40) 44
↑2) Insert (50, 10)

⑪
Co
,) e

dai
di

l · insert into quadrants
o this node has no children,

- need to further subdivide
and more into new subquadrant

T (100, 100)

13

1) Insert (35,40) 40-
↑

4

2) Insert (50, 10)
⑪

Co
,) e

dai
di
#awalht always inserts at a leaf

.

Allows for legn height

T (100, 100)

751 %

1) Insert (35,40) 402-4
2) Insert (50, 10) Co

,) s
3) Insert (60 .15) ⑪

dai
di

T (100, 100)

75-1 2

1) Insert (35,40) 402-4
2) Insert (50, 10) Co

,) s
3) Insert (60 .15) ⑪

dining
di

What is the takeaway of the example for this question ?
T (100, 100)

a) When we evenly subdivide into 4 regions 75
1 2

T 44Need 482R Co
,) e

bo#non-null leaves n Da
leavesIn diC. geometry all question.

Poll

What do YOU want to see at the last practice session?

- Asymptotic analysis
- Graph problems

Do you want us to keep doing Mult. Choice or do more Free response-y questions?

