
PSO 13
Compression, Pattern Matching

justin-zhang.com/teaching/CS251

Announcements
· One more PSO

· Revier session during lead week maybe
· Course Evals

Why compression

q
↓ "agaa

ba 8 bits b bits
f

Huffman Idea: Compress the most frequent letters to be shortest, an example..

12

3 m

n o

Inner-nodes: freqs
Leaves: letters

What is the most freq. letter? What’s the encoding of ‘o’? ‘n’? ‘m’?

0

0 1

1

frea ↓
M : "1 9
'Do F-

ni

oid' &

M

Huffman Idea: Compress the most frequent letters to be shortest

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

12

3 m

n o

Quick example: start off with freqs

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

Quick example

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

Quick example

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Quick example: Step 2

12

_ m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr

Quick example: Step 2

12

_ m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts

at O

Quick example: Step 2

12

1+2 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Quick example: Step 2

_

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

_

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

3+9

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Mmmmm no

m
L

-

S

-11/10001

A

m de 3 m2

Y - m·D- no to

#1Do1)

 Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

 Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2

 Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2

 Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

 Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

 Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

 Q
 (5,e)
 (7,abcd)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

 Q
 (5,e)
 (7,abcd)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12

 Q
 (8,f)
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12

 Q
 (8,f)
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20

 Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20

 Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

 Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

 Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

54

h

Can I get another optimal code?

a b

2 c

4

7

d

e

12f

20g

33

54

h

/

beforeh =0= no
-> /
- after : n = 1 f = 110

3

& e = -1/10

%-

Lexigraphic Ordering Practice:

- ‘c’ vs ‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’

-

& =
2
-

Prioritize letter order
&

·
: 'C'ab' before lenste order

T
= *

· ~

ab,basuan-

--e

-
-

Form the trie for S

*-

D

trie : Store prefixes

e
% X

·

Any intermediate path

⑳ is a prefix of

I · some element in S.

D⑪lon
D id

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Jump 1 after mistake

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

a a a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time

:

S

O
-

C 2
&

((a)=-
Boyer-Moore (T, p) & 12345678

n = IT) a ⑭ [(0)= 7
m= 1P) T OOXXXXO DO --

·

⑰ A L(x)= 4= Lastoccur(P) Y

i= m - 1 p 60XXX X800 m= 8
,
n = 9

-

j = n -
↑

While i < n :

if TCi] = P[c] :
If, = 0 : return i 55. 4 + /

else--

e-Letci]+4 EmmaJ --

else :

i = i + m - min(, l+1)
J m- Prestart

. -y

max (1
,
-Lastoccured

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:

a a a a a a a a a

b a a a a a

T

P

G comparisons
us
. 24Comparisons

1 2 3 4 5 6 7j

f(j)

m a m a g a m a

-

o 1 2 0 0 I Z

This example is a bit long..

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

01234

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

6
-* =2)

#

-44

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why? f(3) says these are equal

Ow

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?
Mismatch at P[4] → No mismatch before P[4]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

Mismatch at P[4], align P[2] with T[7] Why?
No mismatch before P[4] → I can move pattern two spaces

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T

P

O
KMP : linearD(n+m) I

BayerMoore f (nm)

