
PSO 13
Compression, Pattern Matching

justin-zhang.com/teaching/CS251 



Announcements
· One more PSO

· Revier session during lead week maybe
· Course Evals



Why compression
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Huffman Idea: Compress the most frequent letters to be shortest, an example..
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Inner-nodes: freqs
Leaves: letters

What is the most freq. letter?    What’s the encoding of ‘o’?        ‘n’?      ‘m’?   
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Huffman Idea: Compress the most frequent letters to be shortest

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Quick example: start off with freqs
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2
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Quick example
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (1,n)
 (2,n)
 (9,m)



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o
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    Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
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Quick example: Step 2

12

1+2 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (3,no)
 (9,m)



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
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Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2

3+9

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children
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    Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



    Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b
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    Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b
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    Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b
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    Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (5,e)
 (7,abcd)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (5,e)
 (7,abcd)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (8,f )
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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 (8,f )
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Can I get another optimal code?
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Lexigraphic Ordering Practice:

- ‘c’ vs ‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’ 

-

& =
2
-

Prioritize letter order
&

·
: 'C'ab' before lenste order

T
= *

· ~

ab,basuan-

--e

-
-



Form the trie for S
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Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Jump 1 after mistake



Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

a a a



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time
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((a)=-
Boyer-Moore (T, p) & 12345678

n = IT) a ⑭ [(0)= 7
m= 1P) T OOXXXXO DO --

·

⑰ A L(x)= 4= Lastoccur(P) Y

i= m - 1 p 60XXX X800 m= 8
,
n = 9

-

j = n -
↑

While i < n :

if TCi] = P[c] :
If, = 0 : return i 55. 4 + /

else--

e-Letci]+4 EmmaJ --

else :

i = i + m - min(, l+1)
J m- Prestart

. -y

max (1
,
-Lastoccured



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:





a a a a a a a a a

b a a a a a

T

P
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f(j)
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This example is a bit long..



Let T = “rahmamamamagama”
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Let T = “rahmamamamagama”
1 2 3 4 5 6 7
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j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

01234



Let T = “rahmamamamagama”
1 2 3 4 5 6 7
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Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2
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m a m a g a m a
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Mismatch at P[4]
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Mismatch at P[4], align P[2] with T[7]
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Let T = “rahmamamamagama”
1 2 3 4 5 6 7
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j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?      f(3) says these are equal

Ow



Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?  
Mismatch at P[4] → No mismatch before P[4]



Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

Mismatch at P[4], align P[2] with T[7] Why?  
No mismatch before P[4] → I can move pattern two spaces

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T
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