¥ ¢+ comPress Me, and | will Find(you) in ~O(1) Time 9

T
cIiNEma’

@realUnionFind

5:30 PM - Apr 24, 2025 - Tweeted from my Binary Heap

251 Retweets 251 Quote Tweets

PSO 13

Compression, Pattern Matching

http://justin-zhang.com/teaching/CS251

Why compression

hex oct char dec hex oct char dec hex oct char dec hex oct char

dec

£

-

MO O T W% WL ==X = £ C O QT = 0 & 3 > 3 X > N =~ M....
]

E

&

»

1T

O AN MITLOUNOSTNMSTINONOANMIETLONOCANNMTN ON S
T TSI ETTLT DN IINMIINMOOOOVUOOVWORKNRNNRNNRKNRNSE

11111111111111111111111111111111“
©

O N MSTNWONOOON T®AYVDTD Ve O —dNMITINONONODN TO VT U w
©DO0WVWWVWOVOWVWOVOWWOVWOOWVWOVWOVWOWOVWORNNNNNNNNRNNNNRNDR®
ONWOHQTNMSTNONDNDOANMTINONWNNO A NMT D ON
R OCc0 0000000 ddddddddddNNNNNNNN
e IR R R S A A AR AR AR A e R AR R e A o AR AR A A AR AR A e A A AR A AR R)
@CoaVvoWULUYUI-—~"X¥Xd3Z20a0xunkFD>3X>N——~—m—mc< |
O A N MNMITWONOANMLENONOANNMTWOONOCLDNMST LWL ON
O 000000O0HddHHddaddddANNANANNANNNOTONONOO OO M
e R AR A A AR AR AR A AR AR R AR A A AR K B A R A A AR R AR A A A AR AR)
O Hd AN MTWVONNND BT QT VEOANMITIONOND T®A VT Q4
TIEILTLTSTTTSITSTTTTISTSSTST OO O L DD N WD LW D LD 1IN D 1 WD
TN ONNVANO A NMILTNONONDNDO ANMITNONONO o N M N
O WVWWOVWWOWOORNRNRNRNRNRNNNINOG®ONONO®NO®NOEO®WEO®WEOWEOWOH OO A A]

8
@ = =z TV XNoJ- ——~% + =~ 1 NO HANMT N ONOWOO e~V oA
b
O AN MITLONOAANMSTIONOANMITLONOCNMST I ON
ST TS ST ST DDLU LOWLNWLULOOOOOOOORNNNENRNNKNDN
OO0 0000000000000 0DO0O0DO0OO0OO0DO0OO0OO0O0O0O0OOOO0OoOOo
O A NMITWLWONOWOD T O VDT U Od NMIWMONWOGD O VT VW
NAaNaNAaNNNNNNANASNSNANSN®OmEoOnoOm®OmO ;OO OmOnmOoOO®nOonon N
NN ST ONVDNDOANMSWONNDO ANMSTNONWNDNDD A NM
MO NOHOOMONOHONITITITITITITITISTITITISTODWOWLOWMINLBDNDOG O OVO
3 rEEgd5EgSutt 94000382258 %wgey
= = @

2L g-"->c0na"praaazabILagoéeroxs
O AN MM TNONOANMTNONOANMNMIILONOCLNMST ! ON
S 0000000 ddddadddd A NNNNNNNOOMMN®OHNHBMNMMOH M
OO0 O00O00000D0O0D0OO0O0OO0OO0O0O0O0ODO0OO0OO0OO0OO0OO0O0O0O0 O OO
o|d|n|m|s|nfo|~[w|o| cleo| ool o+(S(D N 2I28I582IS S35
O - N m N OMNOWODNO - N m N O~ QO o

O NmswLOrno 3O INESIZILIJIAIRAILLRIRARS

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?
a:1 b:1 ¢:2 d:3 e:5 f:8 ¢g:13 h:21

Can you generalize your answer to find the Huffman codes when the frequencies are the first n Fibonacci
numbers?

(2) A code is called optimal if it can be represented by a full binary tree, in which all of the nodes have
either 0 or 2 children. Is the optimal code unique?

Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; ... b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:

e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.
e p<qganda; =b; forall 0 <i < p.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie
for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100, 0}, then
the output should be the sequence 0, 011, 10, 100, 1011.

Question 3

(Backward pattern matching)
The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

2. Is there any other pattern matching algorihtm that works better in this scenario?

Question 4
(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j), or F'(j) for short, is defined as

F(3) :=m£\x{k§j—l:P[O:k]=[’[j—k:j]}.

In other words, F'(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[i], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7[i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Answer the following questions:

(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much
better than Boyver-Moore?

(2) What is the failure function for the pattern P := “mamagama”?

(3) Let T := “rahrahahahahromaromamagagaoohlala”, run the KMP pattern matching algorithm for
the pattern P in (2).

Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Huffman ldea: Compress the most frequent letters to be shortest, an exampile..

12

0 1
Inner-nodes: freqgs
3 Leaves: letters

What is the most freq. letter? What's the encoding of ‘0’? ‘n'? m’?

Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Huffman Idea: Compress the most frequent letters to be shortest
12

Steps: ° °

1. Add all letters to minHeap by their frequencies

2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Quick example: start off with freqgs

12 Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Quick example

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Quick example

12 Steps:
__________________ 1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
____________________ 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
_____ m n o)
. o) 9 1 2
Q
(1,n)
(2,n)

Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
i G 2. Pop off min, add to the tree Bottom-up
_ R 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
_____ m n 0
n 0 9 1 2
Q

Step 2 in-depth: (1,n)
2a. Initialize node curr (2,n)

Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
T 2. Pop off min, add to the tree Bottom-up
— R 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Step 2 in-depth: (-1—|=|-)

Q
2a. Initialize node curr (Z,H)
2b. Set children to be next two minHeap elts (9,m)

Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
1+2 S 2. Pop off min, add to the tree Bottom-up
e 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Step 2 in-depth: (_1_|=|.)

Q
H
2a. Initialize node curr (2 Iﬂ)
2b. Set children to be next two minHeap elts ’

2c. curr.freq = Add up freq of children (9’m)

Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
_____ 3. Put the current tree into minHeap with freq = tree size, repeat
m n 0
OO ; 1 2
Q
(3,n0)

Quick example: Step 2

. Steps:
1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
_____ 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
m n 0
OO ; 1 2
Q
Step 2 in-depth: (3,no)
2a. Initialize node curr (9 m)

2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

Steps:

1. Add all letters to minHeap by their frequencies
; ° 2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

DR 9

n
1
Q
Step 2 in-depth: (—3;&6-)
(S

2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

3+9 Steps:

1. Add all letters to minHeap by their frequencies
; ° 2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

DR 9

n
1
Q
Step 2 in-depth: (—3;&6-)
(S

2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

(5.€)
(7,abcd)
! (8,f)

2 (13.9)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

12

Q
56y
tHabed)
(8,f)

y 213,9)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Q
12 (8’f)
(12,abcde)

! (13,9)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

20

12

Q
\-nwi
t+2abede}
(13.9)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

20

Q

12 (13,9)
(20,abcdef)
! (21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of freanencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

G T

12

Q
\wacacy)
- {26;abedef)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of freanencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

G T

Q
(2 (21,h)
(33,abcdefg)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

Question 1

(Huffman codes)
Recall that Huffman cod 54 s high-frequency character with short codewords such that no code-

word is a prefix for some eword.

(1) What is an an codes for the followngspt=af freauencies, based on the first 8 Fibonacci numbers?
a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

12

Q
24H)
{33;abedefg)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:

(2) A code is called optimal if it can be represented by a full binary tree, in which all of the nodes have
either 0 or 2 children. Is the optimal code unique?

54

33

20

12

Can | get another optimal code? 7

Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; . .. b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:

e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.

e p<qgand a; =b; forall 0 <i < p.

Given a set S of distinet bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie
for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100,0}, then
the output should be the sequence 0, 011, 10, 100, 1011.

Lexigraphic Ordering Practice:
- ‘c’vs‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’

Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; . .. b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:
e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.
e p<qganda; =b; forall 0 <i < p.
Given a set S of distinet bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie

for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100,0}, then
the output should be the sequence 0, 011, 10, 100, 1011.

Form the trie for S

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

T[0] does not equal P[O]! Jump 1 after mistake

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Fast forward..

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Fast forward.. Same mismatch, jump 1

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Same thing will happen 1 more time

Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Total compares:
Same thing will happen 1 more time, and conclude no match

2. Is there any other pattern matching algorihtm that works better in this scenario?

I . backward

YA i pattern matchingfactory?? how queerl!

ive never seen such a thing- i must inquire about
this further with my supervisor post-hastell

baaaad

Boyer-Moore

m

Forward
pattern matching.
i guess we doin now

/| N
Knuth-Morris-Pratt

Question 4
(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j). or F'(j) for short, is defined as

F(7) := m:lx{kgj— 1:Pl0:k|=Plj—k:j]}.
In other words, F'(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].
In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are
o currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with TTi].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Answer the following questions:
(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much
better than Boyer-Moore?

[S

f(4)

Question 4

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j). or F'(j) for short, is defined as

F(j):=m:}x{k$j—1:P[O:k.]=1’[j—k:j]}.

In other words, F(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].

(2) What is the failure function for the pattern P := “mamagama”™?

mamagama

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0. then shift P to align P[F(j — 1)] with T7i].

e cwrrently at P[0], then shift P[0] to align with T'[i 4 1].
(3) Let T := “rahrahahahahromaromamagagaoohlala”, run the KMP pattern matching algorithm for
the pattern P in (2).

|
Th iS eXa m p | e iS a b it IO n g T := “rahrahahahahromaromamagagaoohlala™ iz 5678910 11[12/13]14[15 16]17[18 10]20[21 22[23]24 252627 28]20]30[31]32]33
- . . la alhjalhla hia|h rio|m a|r|omlajmolg|s glajojo|hlijali|a
hey hows it goin? P e
L [
a
& [
T [
0 |
i [
1 - I
L] |
= L) algla m|
..... n
5
..... mECmE
[|
! i
: .
yea

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a h m a m a m a m a m a

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a h m a m a m a m a m a

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a h m a m a m a m a m a

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a h m a m a m a m a m a

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a h m a m a m a m a m a

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

f(j) 0 1 2 0 0 1

Mismatch at P[4]

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

f(j) 0 1 2 0 0 1

Mismatch at P[4], align P[2] with T[7]

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

f(j) 0 1 2 0 0 1

—

m

m

a

m

Mismatch at P[4], align P[2] with T[7] Why?

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a |/ h m a m | a m a m | a | m a
P T s(m @ g a m a

Mismatch at P[4], align P[2] with T[7] Why? f(3) says these are equal

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Let T = “rahmamamamagama”

J 1 2 3 4 5 6
f(J) 0 1 2 0 0 1
T
r a |/ h m a m | a m a m | a | m a
P T s(m @ g a m a

Mismatch at P[4], align P[2] with T[7] Why?
Mismatch at P[4] — No mismatch before P[4]

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Let T = “rahmamamamagama”

() 0 1 2 0 0 1

Mismatch at P[4], align P[2] with T[7] Why?
No mismatch before P[4] — | can move pattern two spaces

