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Compression, Pattern Matching
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Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?
a:1 b:1 ¢:2 d:3 e:5 f:8 ¢g:13 h:21

Can you generalize your answer to find the Huffman codes when the frequencies are the first n Fibonacci
numbers?

(2) A code is called optimal if it can be represented by a full binary tree, in which all of the nodes have
either 0 or 2 children. Is the optimal code unique?



Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; ... b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:

e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.
e p<qganda; =b; forall 0 <i < p.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie
for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100, 0}, then
the output should be the sequence 0, 011, 10, 100, 1011.



Question 3

(Backward pattern matching)
The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

2. Is there any other pattern matching algorihtm that works better in this scenario?



Question 4
(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j), or F'(j) for short, is defined as

F(3) :=m£\x{k§j—l:P[O:k]=[’[j—k:j]}.

In other words, F'(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].

In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[i], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7[i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Answer the following questions:

(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much
better than Boyver-Moore?

(2) What is the failure function for the pattern P := “mamagama”?

(3) Let T := “rahrahahahahromaromamagagaoohlala”, run the KMP pattern matching algorithm for
the pattern P in (2).



Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Huffman ldea: Compress the most frequent letters to be shortest, an exampile..

12

0 1
Inner-nodes: freqgs
3 Leaves: letters

What is the most freq. letter? What's the encoding of ‘0’? ‘n'? m’?



Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Huffman Idea: Compress the most frequent letters to be shortest
12

Steps: ° °

1. Add all letters to minHeap by their frequencies

2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



Quick example: start off with freqgs

12 Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3




Quick example

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3




Quick example

12 Steps:
__________________ 1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
____________________ 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
_____ m n o)
. o) 9 1 2
Q
(1,n)
(2,n)



Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
i G 2. Pop off min, add to the tree Bottom-up
_ R 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
_____ m n 0
n 0 9 1 2
Q

Step 2 in-depth: (1,n)
2a. Initialize node curr (2,n)



Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
T 2. Pop off min, add to the tree Bottom-up
— R 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Step 2 in-depth: (-1—|=|-)

Q
2a. Initialize node curr (Z,H)
2b. Set children to be next two minHeap elts (9,m)



Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
1+2 S 2. Pop off min, add to the tree Bottom-up
e 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Step 2 in-depth: (_1_|=|.)

Q
H
2a. Initialize node curr (2 Iﬂ)
2b. Set children to be next two minHeap elts ’

2c. curr.freq = Add up freq of children (9’m)



Quick example: Step 2

12 Steps:
1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
_____ 3. Put the current tree into minHeap with freq = tree size, repeat
m n 0
OO ; 1 2
Q
(3,n0)



Quick example: Step 2

. Steps:
1. Add all letters to minHeap by their frequencies
3 m 2. Pop off min, add to the tree Bottom-up
_____ 3. Put the current tree into minHeap with freq = tree size, repeat 2-3
m n 0
OO ; 1 2
Q
Step 2 in-depth: (3,no)
2a. Initialize node curr (9 m)

2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2

Steps:

1. Add all letters to minHeap by their frequencies
; ° 2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

DR 9

n
1
Q
Step 2 in-depth: (—3;&6-)
(S

2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2

3+9 Steps:

1. Add all letters to minHeap by their frequencies
; ° 2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

DR 9

n
1
Q
Step 2 in-depth: (—3;&6-)
(S

2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 ¢:2 d:3 e€:5 f:8 ¢g:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

(5.€)
(7,abcd)
! (8,f)

2 (13.9)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

12

Q
56y
tHabed)
(8,f)

y 213,9)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

Q
12 (8’f )
(12,abcde)

! (13,9)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1
(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

20

12

Q
\-nwi
t+2abede}
(13.9)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d:3 e:5 f:8 ¢:13 h:21

20

Q

12 (13,9)
(20,abcdef)
! (21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of freanencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

G T

12

Q
\wacacy)
- {26;abedef)
(21,h)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no code-
word is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of freanencies, based on the first 8 Fibonacci numbers?

a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

G T

Q
(2 (21,h)
(33,abcdefg)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



Question 1

(Huffman codes)
Recall that Huffman cod 54 s high-frequency character with short codewords such that no code-

word is a prefix for some eword.

(1) What is an an codes for the followngspt=af freauencies, based on the first 8 Fibonacci numbers?
a:l b:1 ¢:2 d 33 If :8 ¢:13 h:21

12

Q
24H)
{33;abedefg)

@

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Steps:



(2) A code is called optimal if it can be represented by a full binary tree, in which all of the nodes have
either 0 or 2 children. Is the optimal code unique?

54

33

20

12

Can | get another optimal code? 7




Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; . .. b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:

e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.

e p<qgand a; =b; forall 0 <i < p.

Given a set S of distinet bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie
for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100,0}, then
the output should be the sequence 0, 011, 10, 100, 1011.

Lexigraphic Ordering Practice:
- ‘c’vs‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’



Question 2

(Trie & lexicographic sort)
Given two bit strings a = agay ...a, and b= bgb; . .. b, we assume WLOG that p < ¢q. Recall that a is
said to be lexicographically less than b if one of the following happens:
e there exists an integer j < p such that a; = b; for all 0 < i < j and a; < b;.
e p<qganda; =b; forall 0 <i < p.
Given a set S of distinet bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie

for bit strings) to sort S lexicographically in O(n) time. For example, if S = {1011, 10,011, 100,0}, then
the output should be the sequence 0, 011, 10, 100, 1011.

Form the trie for S



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward
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(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward
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the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward
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The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward




Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward




Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward




Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

T[0] does not equal P[O]! Jump 1 after mistake



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward




Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Fast forward..



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Fast forward.. Same mismatch, jump 1



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Same thing will happen 1 more time



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

Total compares:
Same thing will happen 1 more time, and conclude no match



2. Is there any other pattern matching algorihtm that works better in this scenario?

I . backward

YA i pattern matchingfactory?? how queerl!

ive never seen such a thing- i must inquire about
this further with my supervisor post-hastell

baaaad

Boyer-Moore

m

Forward
pattern matching.
i guess we doin now

/| N
Knuth-Morris-Pratt




Question 4
(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j). or F'(j) for short, is defined as

F(7) := m:lx{kgj— 1:Pl0:k|=Plj—k:j]}.
In other words, F'(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].
In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are
o currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with TTi].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Answer the following questions:
(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much
better than Boyer-Moore?
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Question 4

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based
upon forward pattern matching, in which a failure function (also named as “suffix function”) is calculated
to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically,
for a pattern P, its corresponding failure function Fp(j). or F'(j) for short, is defined as

F(j):=m:}x{k$j—1:P[O:k.]=1’[j—k:j]}.

In other words, F(j) represents the size of the largest prefix of P[0 : j] that is also a suffix of P[1: j].

(2) What is the failure function for the pattern P := “mamagama”™?

mamagama




In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0. then shift P to align P[F(j — 1)] with T7i].

e cwrrently at P[0], then shift P[0] to align with T'[i 4 1].
(3) Let T := “rahrahahahahromaromamagagaoohlala”, run the KMP pattern matching algorithm for
the pattern P in (2).
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In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”
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f(J) 0 1 2 0 0 1
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Mismatch at P[4]
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Mismatch at P[4], align P[2] with T[7]
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Mismatch at P[4], align P[2] with T[7] Why?




In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T[i 4 1].

Let T = “rahmamamamagama”
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Mismatch at P[4], align P[2] with T[7] Why?  f(3) says these are equal



In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Let T = “rahmamamamagama”
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Mismatch at P[4], align P[2] with T[7] Why?
Mismatch at P[4] — No mismatch before P[4]



In brief, the KMP algorithm can be described as: When a mismatch oceurs at T'[¢], if you are

e currently at P[j] with some j > 0, then shift P to align P[F(j — 1)] with T7i].
e currently at P[0], then shift P[0] to align with T'[i + 1].

Let T = “rahmamamamagama”

() 0 1 2 0 0 1

Mismatch at P[4], align P[2] with T[7] Why?
No mismatch before P[4] — | can move pattern two spaces



