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Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S, V — §), if its weight is the minimum of any
edge crossing the cut. Show that:

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

e the converse is not true, and give a simple counter-example of a connected graph such that there
exists a cut C := (S,V — §), in which (u,v) is a light-edge crossing the cut C but does not form a
MST of the graph.

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T" be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T'
is an MST of G'.



Question 2

(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?



Question 3
(Topological Ordering)
1. Draw a directed acyclic graph G = (V,E) with |V| = 5 nodes that has exactly two topological
orderings.
2. Prove that GG has a topological ordering if and only if G is a DAG.
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Question 1

(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

This forms a ‘cut’



Question 1

(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

The light edge of this cut has weight 1



e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.




e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.
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[What happens in the picture?]




e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.
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e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.
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In an MST, G’ and G” must be
connected.

[How can we get our contradiction?]



Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §), if its weight is the minimum of any
edge crossing the cut. Show that:

“If e is the light edge of some cut, then itis in every MST.”

Show that this is false.




2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!




2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

(Me and my bois have taken all the weights off the graph (we need them for
our super set))
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2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!
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2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!
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T, and T, differ on some edges €€,



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

o

T, and T, differ on some edges e.,c,. Consider cut C defined above.



2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T, and T, differ on some edges e.,c,. Consider cut C defined above.



2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

By our assumption, say e is our unique light edge in cut C i.e., wi(e,) < wi(e,)



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!
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But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of



2. Show that a graph has a unique I\IS'I if for every cut of the glaph there is a unique light-edge
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But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of ¢,



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Time for the counter example



3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if 7" is connected, then T
is an MST of G .

Let this be the graph Gand mst T




3. Let T" be an MST of a graph G = (V| E), and let V' bea subset of V. Let T  be the subgraph of T
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Suppose we define V’ as follows



3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T
is an MST of G .

— (

: o
Suppose we define V’ as follows. This is T’, T induced by V’

What went wrong? Why isn'ta T' MST?
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3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if T° is connected, then T
is an MST of G .

Let this be the graph Gand mst T

Suppose we define V’ as follows. This is T’, T induced by V’

WTS: this is an MST of V’



3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T
is an MST of G .

Let this be the graph Gand mst T

WTS: this is an MST of V’

AFtSoC there is a cheaper tree T” differing in edges above (added , removed)



3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V', and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’
Back in the original graph we originally had MST T



3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V', and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’

Removing the red edge and adding the green edge gives us a cheaper tree



Question 2

(Prim’s & Kruskal’s algorithm)
1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?

Simple Intuition of Prim’s algorithm?



Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
. . - . . . . . ’ 12 .
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Dijkstra Prim’s Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V) algorithm DijkstraShertestPath(G(V,E), s€V)
let dist:V - 1Z let dist:V->1Z
let prev:V -V let prev:V -V
let Q be an empty priority queue let Q be an empty priority queue
dist[s] « © dist[s] « @
for each vEV do for each veV do
if v#s then if v#s then
dist[v] « o dist[v] « o
end if end if
prev[v] « -1 prev[v] « -1
Q.add(dist[v], v) Q.add(dist[v], v)
end for end for
while Q is not empty do while Q is not empty do
u « Q.getMin() u « Q.getMin()
for each w €V adjacent to u still in Q do for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w) d « -distful—+ weight(u, w)
if d < dist[w] then if d < dist[w] then
dist[w] « d dist[w] « d
previw] « u previw] « u
Q.set(d, w) Q.set(d, w)
end if end if
end for end for
end while end while
return dist, prev return dist, prev

end algorithm end algorithm



(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
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tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:
update dist and pq

What we can do with an adj matrix



(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph GG

Question 2

(V. E) as an adjacency-matrix. Give a simple implementa-

tion of Prim’s algorithm for this case that runs in O(|V[?) time.
/}[Uj[\/j ion of Prim’s algorithm for this case that runs in O(|V|*) time 2 2
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Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] ¢ o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode >
>

/lInitialize prev, dist

Let dist[v] = current min. edge to v 8 z; ©
o o

—
3
while pq is not empty: \/
Vertex u <- pg.pop()

Q

for each edge (u,v):
if wi(u,v) < dist[v]:
update dist and pq

What we can do with an adj matrix



(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
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tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq

What we can do with an adj matrix
What we cannot do (right away)



Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-

tion of Prim’s algorithm for this case that runs in O(|V|?) time.
(
: J st = [79 o @)
Prims(G,start): V/

/Nnitialize prev, dist /nitialize prev, dist ngv,,%
Let dist[v] = current min. edge to v W@&/VMMM Cando 1S v/
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update dist and pq if wt((a, £)) < dist[]:
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2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
,. 5 R p —
make Kruskal's algorithm run?

Kruskal

- Sort edges by increasing order of their weights // O(?) time
- Run a Union Finding procedure // ~O(|E|) time
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The values of the edges are bounded by |V|. What’'s a good sorting algorithm for this?

Foshr bomn  OUIEIIEL) Troe 7 |

Cawﬂlmgsgr} :OC \/\ACAXWW + )E/)
— OCiy4R)



Question 3

(Topological Ordering)

1. Draw a directed acyclic graph G = (V. E) with |V| = 5 nodes that has exactly two topological
orderings.

2. Prove that GG has a topological ordering if and only if G is a DAG.

When do we have two topo orderings?
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2. Prove that G has a topological ordering if and only if G is a DAG.

(—) Suppose G has a topo ordering (WTS: DAG)
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