PSO 12

Minimum Spanning Trees, Prim’s vs. Kruskal’'s, Topos == DAG

L

Slides @ justin-zhang.com/teaching/CS251

Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S, V — §), if its weight is the minimum of any
edge crossing the cut. Show that:

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

e the converse is not true, and give a simple counter-example of a connected graph such that there
exists a cut C := (S,V — §), in which (u,v) is a light-edge crossing the cut C but does not form a
MST of the graph.

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T" be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T'
is an MST of G'.

Question 2

(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?

Question 3
(Topological Ordering)
1. Draw a directed acyclic graph G = (V,E) with |V| = 5 nodes that has exactly two topological
orderings.
2. Prove that GG has a topological ordering if and only if G is a DAG.

Question 1
(Minimum spanning trees) \/

1. An edge is called a light-edge crossing a cut C := (S, V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

Say | define C as

Question 1

(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

This forms a ‘cut’

Question 1

(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

The light edge of this cut has weight 1

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

not o lightelye
Pf: AFtSoC e isotin a MST

[What happens in the picture?]

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

SUPPWPQ & [$(q J[MQ ms +

[What happens in the picture?]

[con SoF o lightr mst by
1 Akud Teling el e e/g

s

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

S nola [1c,h} @Jye
Pf: AFtSoC e ishotin a MST

In an MST, G’ and G” must be
connected.

[How can we get our contradiction?]

Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §), if its weight is the minimum of any
edge crossing the cut. Show that:

“If e is the light edge of some cut, then itis in every MST.”

Show that this is false.

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

(Me and my bois have taken all the weights off the graph (we need them for
our super set))

2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

AFtSoC there are two different MSTs T1 and T2

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

AFtSoC there are two different MSTs T1 and T2

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

N

AFtSoC there are two different MSTs T1 and

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

O

T, and T, differ on some edges €€,

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

o

T, and T, differ on some edges e.,c,. Consider cut C defined above.

2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T, and T, differ on some edges e.,c,. Consider cut C defined above.

2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

By our assumption, say e is our unique light edge in cut C i.e., wi(e,) < wi(e,)

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

O

But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of

2. Show that a graph has a unique I\IS'I if for every cut of the glaph there is a unique light-edge
crossing the cut. S

QVIW/nql N
Q.SSW"V/LWJ o Preoge

was [/(7;7 }éj?L
st

=0 LWLWJ@“ /

Ch&ﬂﬁed QWL Cr H/@
60’7@

View/ m37L (% //9)7/&” 7%0 /\
NS 7 -

But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of ¢,

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Time for the counter example

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if 7" is connected, then T
is an MST of G .

Let this be the graph Gand mst T

3. Let T" be an MST of a graph G = (V| E), and let V' bea subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V. Show that if T is connected, then T
is an MST of & .

Let this be the graph Gand mst T

Suppose we define V’ as follows

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T
is an MST of G .

— (

: o
Suppose we define V’ as follows. This is T’, T induced by V’

What went wrong? Why isn'ta T' MST?

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if T" is connected, then T
is an MST of G .

Let this be the graph Gand mst T

Suppose we define V’ as follows

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if T° is connected, then T
is an MST of G .

Let this be the graph Gand mst T

Suppose we define V’ as follows. This is T’, T induced by V’

WTS: this is an MST of V’

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T
is an MST of G .

Let this be the graph Gand mst T

WTS: this is an MST of V’

AFtSoC there is a cheaper tree T” differing in edges above (added , removed)

3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V', and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’
Back in the original graph we originally had MST T

3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V', and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’

Removing the red edge and adding the green edge gives us a cheaper tree

Question 2

(Prim’s & Kruskal’s algorithm)
1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?

Simple Intuition of Prim’s algorithm?

Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
. . - ’ 12 .
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Dijkstra Prim’s Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V) algorithm DijkstraShertestPath(G(V,E), s€V)
let dist:V - 1Z let dist:V->1Z
let prev:V -V let prev:V -V
let Q be an empty priority queue let Q be an empty priority queue
dist[s] « © dist[s] « @
for each vEV do for each veV do
if v#s then if v#s then
dist[v] « o dist[v] « o
end if end if
prev[v] « -1 prev[v] « -1
Q.add(dist[v], v) Q.add(dist[v], v)
end for end for
while Q is not empty do while Q is not empty do
u « Q.getMin() u « Q.getMin()
for each w €V adjacent to u still in Q do for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w) d « -distful—+ weight(u, w)
if d < dist[w] then if d < dist[w] then
dist[w] « d dist[w] « d
previw] « u previw] « u
Q.set(d, w) Q.set(d, w)
end if end if
end for end for
end while end while
return dist, prev return dist, prev

end algorithm end algorithm

(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
2 R sl . . 3 q 12 2
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:
update dist and pq

What we can do with an adj matrix

(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph GG

Question 2

(V. E) as an adjacency-matrix. Give a simple implementa-

tion of Prim’s algorithm for this case that runs in O(|V[?) time.
/}[Uj[\/j ion of Prim’s algorithm for this case that runs in O(|V|*) time 2 2

- W]LZ Uy l/>

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] ¢ o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode >
>

/lInitialize prev, dist

Let dist[v] = current min. edge to v 8 z; ©
o o

—
3
while pq is not empty: \/
Vertex u <- pg.pop()

Q

for each edge (u,v):
if wi(u,v) < dist[v]:
update dist and pq

What we can do with an adj matrix

(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
2 R sl . . 3 q 12 2
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v eV do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq

What we can do with an adj matrix
What we cannot do (right away)

Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-

tion of Prim’s algorithm for this case that runs in O(|V|?) time.
(
: J st = [79 o @)
Prims(G,start): V/

/Nnitialize prev, dist /nitialize prev, dist ngv,,%
Let dist[v] = current min. edge to v W@&/VMMM Cando 1S v/
while pq is not empty: £, e\~ éﬁﬁfﬂ .\Z forloop 11 OUn)
Vertex u <- pq.pop(): let O be)he Win . wewht e ot
foreacﬁedge (u,v): T add Co)
Prey [u)liwuu e T k=1, st} A L0]IK) 7 ¢

update dist and pq if wt((a, £)) < dist[]:

/7/@@/]: (st (k] zwi(Q,/c)B
Prev (k=)

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
,. 5 R p —
make Kruskal's algorithm run?

Kruskal

- Sort edges by increasing order of their weights // O(?) time
- Run a Union Finding procedure // ~O(|E|) time

Witk @ty ok Kshal vvns 1o OCIELFIVE) $,. 0

The values of the edges are bounded by |V|. What’'s a good sorting algorithm for this?

Foshr bomn OUIEIIEL) Troe 7 |

Cawﬂlmgsgr} :OC \/\ACAXWW +)E/)
— OCiy4R)

Question 3

(Topological Ordering)

1. Draw a directed acyclic graph G = (V. E) with |V| = 5 nodes that has exactly two topological
orderings.

2. Prove that GG has a topological ordering if and only if G is a DAG.

When do we have two topo orderings?

@\s 7
‘1 >@ é

2. Prove that G has a topological ordering if and only if G is a DAG.

(—) Suppose G has a topo ordering (WTS: DAG)
AFTsor Shere (s a4 Ccle

[(}171/1(7L hae %J‘Ofy/grﬂgw/ Qf\afgf,),\gL

Pk o dopotoncal labohes

F o diStrepents
(«—) Suppose G is a DAG (WTS: topo ordering)

G ey o Soirels) und o, Sial0s)

/ .
- PsSume F@fm[jam@S & with m)< 7 10065, }4» }% 4 }0}09#8//5
« Suppose & hes vt vodes, Rerowo fine Sink g |

(54 VH, e 15 < fopo (afz)\?/’)m of 6-S, /s Jo 0 0nd S D2k

