1 GZSD/PUIUOES} /W0 DUBYZ-URSNI//- SNy

PSO 11
Dijkstra, Bellman-Ford, Union Find

https://justin-zhang.com/teaching/CS251

Midterm

Time to lock in

Question 1
(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.
2. Given a weighted, directed graph G = (V. E) in which edges that leave the source vertex s may have

negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

3. Your classmate claims that Dijkstra’s algorithm relaxes the edges of every shortest path in the graph
in the order in which they appear on the path. Show that him/her is mistaken by constructing a directed
graph for which the Dijkstra’s algorithm could relax the edges of a shortest path out of order.

Question 2
(Bellman-Ford algorithm)
For the Bellman-Ford algorithm, explain
1. why it only requires |V'| — 1 passes?

2. why the last pass (|V| — 1) through the edges will determine if there are negative weight cycles or
not?

Question 3
(Union find)

1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the
data-structure is defined in the following table.

i 0 1 2 3 4
Idfij |8 3 1 3 4
List each disjoint set along with its canonical element
trees).

6 7 8 9
2 6 1 8

Hint: It may help to draw the corresponding

Lot Bl

—

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure.)

3. Assume that k) and ks are integers such that 1 < k; < ks. Show that

log, (k1 + k2) = max{1 + log, k1, log, k2 }.

4. (Union By Weight) Suppose that we implement our Union Find data structure with the union-by-
weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n.

Question 1
(Dijkstra’s algorithm)

1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

Note: We do not relax nodes we have already visited in the pQ

N =
A

w

dist @ q/
prev A /X{

™ N

2. Given a weighted, directed graph G = (V. E) in which edges that leave the source vertex s may have
. . . . ATy yrrerrra SR

negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.

Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

This seems plausible... but the previous example was false

e

foredge e =(uv) 9 / -251
£ Jolly) 2 deloewie) TG

, + G205 01—>b ﬁ/‘&-}f
%/VC[W(b talen oFF p & tirst
C ‘weixed the Srarks} redh >

2. Given a weighted, directed graph G = (V, E) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

This seems plausible... but the previous example was false

This works! (Exercise)

Question 2 \
(Bellman-Ford algorithm)
- - | oS : o — /7
For the Bellman-Ford algorithm, explain —~ W

1. why it only requires |V| — 1 passes?
2. why the last pass (|V| — 1) through the edges will determine if there are negative weight cycles or
not?
(\/[Beumm - Ford (G, shs
Intuition: disy L] ==
preul]) = l
| am running dijkstra |V| - 1 times((w/o\prior_ity) Just Ls)=2
. . | Qar i :[,,_.,mf
| might miss a shortest path :
Yk bor ench edye e=WgE
| can only miss it |[V| - 1 times i.e. ““”;;;, r{é- dist (9] +w(e)
diskshu It d<dist [u]:
my paths “improve” only |V| - 1 times s)p distLy]= o
J p”eVEV]vd
4
B ezt L e o= (yu)eE
P EV’I”) A iF 0istCo)+ wled < LT’
e Negaulne C4cle

=1
/‘.Mfﬂ) at re) Frd‘ 2)- 1
¢ Oz\%-) s A bc
: o 4 3 4
s /j

Ve only losked ot eash edse orce

Gren s «f;r LA @

> O

(P ek,

- slalele
S \/-‘/v 0734;

Another el éw’@ﬂqj

3 I{VW\«MJ

Aodier edge o, fabie, fle Tl ui-1

N
M
<< T
n Q

O b

Question 3 C S)
m857 /ﬁ

(Union find)

1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the

. g 2 H —
data-structure is defined in the following table.
£\ N\

5UT Koo 0 [2 |2 BN 6 [— & [o
8 |3 1 3/ W/gig 2 |6 |1 |8

Jed o
List each disjoint sef AR g with its canonical element (Hint: It may help to draw the corresponding

trees). .) {
What is quick union? @) @ 0,16 967%@))
\@ Vg 2 e Sets)

How do the trees look?
Q’L chj @/@) 5 / N i 3,1/9,0/3J2/‘5f7}

)02) = g T g
w 7 gm /
mb / \/\/(ﬁa @ g
>

i Jo 1 |2 [3 [4 |5 |6 |7 |8 |9
Idif |8 3 1 3 4 4 2 (i 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight., We
then run Union(6. 5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Path compression:
A"NJHM HrwarSe Jﬂ\a ’}feeJ [ﬂ'\ﬂv@ 01)’ ﬂe 7[)'0!«'@9/ V()rJHCGS 4 o %

P)
Union by weight: 9\@ — @@ G

@ find(y)
@ Ot](/chj VWL h(?m/ff(\ O~ 71070

i (o |1]2 [3 |4 [5 |6 [7 |8 |9
dij |8 |3 [1 [3 [4 |4]2 |6 |1 |8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

(3 (&) _
Union(5,6)

(1) —

i 0 |1 |2 [3 |4 | 9
Idiij |8 |3 1 3 |4 1 2 |6 1 8

o
==
-3
ox

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)
Step 1: find their roots by

Q Q 9 traversing up the tree

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

i 0 4 |5 |6 |7 9
Idfif |8 1 1 2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6. 5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 5 |6 |7 9
Idiif |8 1 3 1 2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 1]2 3 5 |6 |7 |8 |9
Idiij |8 |: 1 3 1 2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots

Union by weight
(minimize suffering!)

Step 3: Update the table

i 0 2 4[5 [6 J7 [8 [9
i |8 S ¥4 [¥>]6 [T |8

3. Assume that &, and &k, arve integers such that 1 < &y < ks, Show that

loga(ky + k2) 2 max{] + log, &y, log, ka }.

QQQJ_Lkz) 2 log k, because...

hetawe 1<, 5k, 7)mm) los 15 lnur. T[(/ﬁ/%;pm.

log(k, +k,) =21+ log k, because...
P
)CZZ ’CJ

lag[/c/ﬂtc>2 [096

Hence, we are done. 7,

)C[_Hélj = 1t sk
)

i 0 1 [2 |3 [4 [! 9
Idiij |8 |3 1 3 |4 1 2 |6 1 8

o

o
e |
x

4. (Union-By-Weight) Suppose that we implement our Union-Find data structure with the union-hy-

weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n,

Recall we know

loga(ky + k2) 2 max{1 + log, ky, log, ka2 }.

S

BC:n=1
Jogy = U

ool Jonde hos W(T) =0
Atroe [wwih 7L nje s >’_7_[o7¢’/0

i 0 1 2

2 |3 |4 |5 |6 |7 |8 |9
[_//);7/7[51 i |8 [3 [T |3 |4

4 2 0

1 8

L (Union-By-Weight) Suppose that we implement our Union-Find data structure with the union-hy-

weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n,

Recall we know

loga(ky + ka) 2 max{1 + log, &y, log, ko }.

J
IS: Assume for all n’ < n, o vnioa-hy -wedght free withn pole
SUWQSG T has n nodes

- b\[H')‘) HKS/}é/QS n,
TL’W} ’P?f/h ‘ HKS)Q/
& T=Unin(S, 52))‘“5\ H(ﬂ:[’ D7
) = =& .
| j/_ S Nn= ;/)[+/)Z HLT) = may {{)7’[5,)) /H{(gﬁ)

1 r‘@ L may {’%ﬂ‘J It oo, §
(]

log (7, 4n,)
(99

hes hexyh? i) mos) les’

N

[yY

