
PSO 11
Dijkstra, Bellman-Ford, Union Find

https://juhttps://justin-zhang.com
/teaching/C

S
251 ht

tp
s:

//j
uh

ttp
s:

//j
us

tin
-z

ha
ng

.c
om

/te
ac

hi
ng

/C
S

25
1

https://justin-zhang.com/teaching/CS251
https://justin-zhang.com/teaching/CS251

Midterm

Time to lock in

Note: We do not relax nodes we have already visited in the pQ

a

b

c

2

1

-251

A B C

dist

prev

pQ

1.
2.
3.

This seems plausible… but the previous example was false

a

b

c

2

1

-251

This seems plausible… but the previous example was false

a

b

c

21

1 2

-251

This works! (Exercise)

Intuition:

I am running dijkstra |V| - 1 times (w/o priority)

I might miss a shortest path

I can only miss it |V| - 1 times i.e.

my paths “improve” only |V| - 1 times

What is quick union?

How do the trees look?

 Path compression:

Union by weight:

3

1

8

0 9

2

6

7

4

5

Union(5,6)

3

1

8

0 9

2

6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)
Step 3: Update the table

log(k1 + k2) ≥ log k2 because…

log(k1 + k2) ≥ 1+ log k1 because…

Hence, we are done.

Recall we know

BC: n = 1

Recall we know

IS: Assume for all n’ < n,

