| GZSD/bulydesy/wod bueyz-unsnl/-sapynl/:sdpy

PSO 11
Dijkstra, Bellman-Ford, Union Find

https://juhttps://justin-zhang.com/teaching/CS251

https://justin-zhang.com/teaching/CS251
https://justin-zhang.com/teaching/CS251

Midterm

Time to lock in

Question 1
(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.
2. Given a weighted, directed graph G = (V. E) in which edges that leave the source vertex s may have

negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

3. Your classmate claims that Dijkstra’s algorithm relaxes the edges of every shortest path in the graph
in the order in which they appear on the path. Show that him/her is mistaken by constructing a directed
graph for which the Dijkstra’s algorithm could relax the edges of a shortest path out of order.

Question 2
(Bellman-Ford algorithm)
For the Bellman-Ford algorithm, explain
1. why it only requires |V'| — 1 passes?

2. why the last pass (|V| — 1) through the edges will determine if there are negative weight cycles or
not?

Question 3
(Union find)

1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the
data-structure is defined in the following table.

i 0 1 2 3 4
Idfij |8 3 1 3 4
List each disjoint set along with its canonical element
trees).

6 7 8 9
2 6 1 8

Hint: It may help to draw the corresponding

Lo Bl

—

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure.)

3. Assume that k) and A, are integers such that 1 < k; < ks. Show that

log, (k1 + k2) = max{1 + log, k1, log, k2 }.

4. (Union By Weight) Suppose that we implement our Union Find data structure with the union-by-
weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n.

Question 1
(Dijkstra’s algorithm)

1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

Note: We do not relax nodes we have already visited in the pQ

N —

w

dist

prev

2. Given a weighted, directed graph G = (V, E) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

This seems plausible... but the previous example was false

2. Given a weighted, directed graph G = (V, E) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

This seems plausible... but the previous example was false

42

This works! (Exercise)

Question 2
(Bellman-Ford algorithm)

For the Bellman-Ford algorithm, explain

1. why it only requires |V'| — 1 passes?
2. why the last pass (|V| — 1) through the edges will determine if there are negative weight cycles or
not?
Bl e 3Ford { &, 5z
Intuition: disp L] ==
preuf] = -!
| am running dijkstra |V| - 1 times (w/o priority) Jdust Ls]) =2
_ _ — for 7 =1, et
| might miss a shortest path SN ,
i \‘\mr ench edye €= (Lv)SE !
| can only miss it |V| - 1 times i.e. ““”;;:;, J & dstlol+wce)
| | NS I+ d<ass]
my paths “improve” only [V]| - 1 times &Jcp d‘Sva]: J
J p”eVEV]vd
e ﬁr ah o= (yv)EE
dae TF Oisko)+wled < ICVI”
e Negujne C4cle

14
LO@L&) w/ﬂO FﬂSL 2): 1
! g 4 3 4
5 /j

Iue only losked af eoch edse mrce

Green ey «fsm DA @

> O

/(«M' Shr)@} io}.

SAGBbC
S} \/_‘/' 0734;

Anothr el mJemb

3 I{VW\«MJ

Aotier edoe o, fdbie, fle Tl ui-1

N
N
<< T
n Q

O b

Question 3

(Union find)

1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the
data-structure is defined in the following table.

i 0 1 2 3 1 0 6 7 8 9
Idfif |8 |3 1 3 |4 [2 [1 8
List each disjoint set along with its canonical element (Hint: It may help to draw the corresponding
trees).

What is quick union?

How do the trees look?

i 0 |1 [2
Idi| |8 |3 1 3 [4 |4

-
w
e
=
o
-1
=

0 1 8

(3

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Path compression:

Union by weight:

i (o |1]2 [3 |4 [5 |6 [7 |8 |9
il |8 |3 1 3 14 |4 |2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

i 0 |1 |2 [3 |4 | 9
Idiif |8 |3 1 3 |4 1 2 |6 1 8

o
==
-3
ox

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)
Step 1: find their roots by

Q Q 9 traversing up the tree

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 5 |6 |7 9
Idiif |8 1 3 1 2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 1 2 |3 5 |6 |7 |8 |9
Idiij |8 |: 1 3 1 2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots

Union by weight
(minimize suffering!)

Step 3: Update the table

i 0 4 |5 [6 [7 [8 J9
Idfif |8 1 4 |14 |2 |6 1 8

3. Assume that &) and &, are integers such that 1 < &y < ks, Show that

loga(ky + k2) = max{1 + log, ky, log, ka }.

log(k, + k,) 2log k, because...

log(k, + k,) 21+ log k, because...

Hence, we are done.

i 0 |1 |2 -
Idi| |8 |3 1 3 [4 |4

-
w
&
=
o
-1
=

(3

0 1 8

4. (Union-By-Weight) Suppose that we implement our Union- Find data structure with the union-hy-

weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n,

Recall we know

loga(ky + k2) 2 max{1 + log, k), log, ka2 }.

BC:n=1

i 0 |1 [2 -
Idif |8 |3 1 3 |4 |4

—~
o
—
=
=2
-3
=

0 1 8

(3

4. (Union-By-Weight) Suppose that we implement our Union- Find data structure with the union-hy-

weight optimization. Use an inductive argument to show that the maximum height of any tree in the
union find data-structure is at most log, n,

Recall we know

loga(ky + k2) 2 max{1 + log, k), log, ka2 }.

IS: Assume for all n’ <n,

