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Midterm

Time to lock in 









Note: We do not relax nodes we have already visited in the pQ
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This seems plausible… but the previous example was false
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This works! (Exercise)



Intuition: 

I am running dijkstra |V| - 1 times (w/o priority)

I might miss a shortest path

I can only miss it |V| - 1 times i.e.

my paths “improve” only |V| - 1 times









What is quick union?

How do the trees look?



 Path compression:

Union by weight:
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Union(5,6)
Step 1: find their roots by 
traversing up the tree
Path compress

Step 2: connect roots
Union by weight 

(minimize suffering!)
Step 3: Update the table



log(k1 + k2)  ≥ log k2 because…

log(k1 + k2)  ≥ 1+ log k1 because…

Hence, we are done.



Recall we know

BC: n = 1

 



Recall we know

IS: Assume for all n’ < n, 


