PSO 3

Induction

justin-zhang.com/teaching/CS251

http://justin-zhang.com/teaching/CS251

Question 1
For this problem we will consider the following algorithm which computes n*

15:

16:

: function POWER(n : Zwo, x : Z>q)
if z = 0 then
return 1
end if
if z =1 then
return n
end if
temp + 1
if z is odd then
temp < n
temp « temp x POWER(n, (z — 1)/2)
return temp x POWER(n, (z — 1)/2)
end if
temp < temp x POWER(n, z/2)
return temp x POWER(n, z/2)
end function

(a) Use induction to prove that temp always outputs n* for any integers > 0 and n > 0. Hint: Do
we want to induct on z or do we want to induct on n?

Recursion and Induction are strongly linked!

fun fib (n)
if n =
if n =

return

O:

1:

Proposition: £ib(n) = nth fib. number

return O

return 1

fib(n - 1) + fib (n - 2)

My function structure should mirror my proof structure

Recursion and Induction are strongly linked!

fun

Proposition: £ib(n) = nth fib. number
Base case: (n =0,1)

fib(n) =
Base case
if n = 0: return O
if n = 1: return 1
return fib(n - 1) + fib (n - 2)

My function structure should mirror my proof structure

Recursion and Induction are strongly linked!

fun

Proposition: £ib(n) = nth fib. number
Base case: (n =0,1)

fib(n) =
Base case
if n = 0: return O
if n = 1: return 1
return fib(n - 1) + fib (n - 2) IH?

My function structure should mirror my proof structure

Recursion and Induction are strongly linked!

Proposition: £ib(n) = nth fib. number
Base case: (n =0,1)

fun fib(n) =
Base case
if n = 0: return O
if n=1: return 1
return fib(n - 1) + fib (n - 2) IH: Assume that
We need an IH for both (n - 1) AND (n - 2 1. £ib(n-1)= (n-1)fib
¢ need an I for both (n - 1) AND (n - 2) 2. fib(n-2)= (n - 2)th fib.

Note: we could have used strong induction e.g

Question 1
For this problem we will consider the following algorithm which computes n*

10:
11:
12:
13:
14:
15:

16:

0. LR Sl W ok

: function POWER(n : Zwo, x : Z>q)
if z = 0 then
return 1
end if
if z =1 then
return n
end if
temp + 1
if z is odd then
temp < n
temp « temp x POWER(n, (z — 1)/2)
return temp x POWER(n, (z — 1)/2)
end if
temp < temp x POWER(n, z/2)
return temp x POWER(n, z/2)
end function

n

(a) Use induction to prove that temp always outputs n* for any integers > 0 and n > 0. Hint: Do
we want to induct on z or do we want to induct on n?

or xX? (hint: function structure motivates induction)

Inducting on x (fix the other variable n)

Proposition: Power(n) = n*

1: function POWER(n . Z)(), x: ZZO) Base case:
2: if z =0 then

3 return 1

4 end if IH:
5: if 2 =1 then

6 return n

7 end if

8 temp + 1

9: if z is odd then
10: temp < n
11: temp < temp x POWER(n, (z — 1)/2)
12: return temp x POWER(n, (z — 1)/2)
13: end if
14: temp « temp x POWER(n, z/2)
15: return temp x POWER(n, z/2)
16: end function

Let’s first label the base case and

Inducting on x

Pl el e i o =
L ey Tk

O 00N B Wi R

—
ool =

function POWER(n

if 2 =0 then
return 1

end if

if z =1 then
return n

end if

g Z)(), x: ZZO)

Base case

Recursive case}

temp + 1
if z is odd then
lemp < n

return lemp
end if

temp + temp x POWER(n, (z — 1)/2)

temp « temp x POWER(n, z/2)
return temp x POWER(n, z/2)

x POWER(n, (z — 1)/2)

16: end function

Proposition: Power(n) = n*
Base case: n°=1,n'=n
Inductive step:

IH:

Inducting on x

Pl el e i o =
L ey Tk

O 00N B Wi R

—
ool =

function POWER(n

if 2 =0 then
return 1

end if

if z =1 then
return n

end if

A Z)(), x: ZZO)

Base case

Recursive case}

temp + 1
if z is odd then
lemp < n

return lemp
end if

temp + temp x POWER(n, (z — 1)/2)

temp « temp x POWER(n, z/2)
return temp x POWER(n, z/2)

x POWER(n, (z — 1)/2)

. end function

Proposition: Power(n) = n*
Base case: n°=1,n'=n

Inductive step: Suppose x > 1. We want to

show Power(n) = n*

IH:

(IH here is a bit more tricky..)

Inducting on x

e e el e
o el TR o

—
=]

O QAR ol W0y R

function POWER(n : Z~o, x : Z>q)
if 2 =0 then
return 1
end if Base case
if z =1 then
return n
end if

temp + 1
if z is odd then
temp < n
temp < temp x POWER(n, (z — 1)/2)
return temp x POWER(n, (z — 1)/2)
end if
temp « temp x POWER(n, z/2)
return temp x POWER(n, z/2)

. end function

Proposition: Power(n,x) = n*
Base case: n°=1,n'=n

Power(n) = n*
IH: Assume Power(n,x’) = n* for all x’ < x

How do | proceed with my proof?

Inducting on x

— = = =
o 03 Nk

—
=]

O QAR ol W0y R

—
ool =

if 2 =0 then
return 1

end if

if z =1 then

return n
end if

function POWER(n : Z~o, x : Z>0)

Base case

temp + 1

temp < n

end if

if z is odd then

temp < temp x POWER(n, (z — 1)/2)
return temp x POWER(n, (z — 1)/2)

temp « temp x POWER(n, z/2)
return temp x POWER(n, z/2)

. end function

Proposition: Power(n,x) = n*
Base case: n°=1,n'=n

Power(n) = n*
IH: Assume Power(n,x’) = n* for all x’ < x

PROOF STRUCTURE == CODE STRUCTURE

Case 1: x odd

Case 2: x even

(b) Let T'(x) denote the total number of multiplication operations when we compute POWER(n,) and
n # 0. Write down a recurrence relationship for T'(x).

1: function POWER(n : Zg, : Z>p)

2: if z = 0 then

3: return 1

4: end if Base case

5: if z =1 then

6: return n

T: end if

8: temp 1

9: if z is odd then

10: temp < n
11: temp < temp x POWER(n, (z — 1)/2)
12: return temp x POWER(n, (z — 1)/2)
13: end if

14: temp < temp x POWER(n, z/2)

15: return temp x POWER(n, z/2)

16: end function

RECURRENCE
PRE6F STRUCTURE == CODE STRUCTURE

Case 1: x odd

Case 2: x even

(¢) Solve your recurrence relationship to find T'(x). Express your answer using big © notation.

T(n) = 2T(n/2) + 2

(d) Modify the recursive algorithm POWER so that it is more efficient. What is the new recurrence
relationship for T'(x)? What does it solve to?

1: function POWER(n : Z~g, 2 : Z>q)

2 if z =0 then

3 return 1

4: end if

5: if z =1 then

6 return n

7 end if

8 temp 1

9: if = is odd then
10: temp < n
11: temp < temp x POWER(n, (z — 1)/2)
12: return temp x POWER(n, (z — 1)/2)
13: end if
14: temp < temp x POWER(n, z/2)
15: return temp x POWER(n, z/2)
16: end function

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

1. Inserting an element in its sorted position.

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

2. Finding the smallest element in the list.

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

3. Finding the 3¢ - largest element in the list.

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.

4. Finding the median in the list.

Question 1

(Linked List) Consider a sorted circular doubly linked list of N numbers where the head element points
to the smallest element in the list. Provide the asymptotic complexity in big-© with a brief explanation
(including assumptions and analysis for each case, if there is more than one) for the following operations.
. Inserting an element in its sorted position.

. Finding the smallest element in the list.

. Finding the 3"? - largest element in the list.

- O N e

. Finding the median in the list.

Question 3

The Josephus Problem is a theoretical puzzle based on a historical account from the Jewish historian
Flavius Josephus during the Jewish-Roman war. According to the story, Josephus and his 40 soldiers
were trapped in a cave. with enemy soldiers outside. Preferring suicide to capture, they decided to form
a circle and, proceeding around it, to kill every kth person until no one was left. Josephus, preferring
to surrender to the Romans rather than die, figured out where he needed to sit to be the last survivor.
This problem asks vou to compute the position Josephus should choose to avoid being killed, given the
number of people in the circle (n) and the step rate (k).

Input: The total number of people n in the cirele and a number £ which indicates that every kth person
will be killed.

Output: The position in which Josephus should sit to be the last survivor.

First, create a Circular Linked List: Represent the people in a circle using a circular linked list where
each node represents a person. The last person’s next pointer points back to the first person, forming a
circle.

Next, simulate the Elimination Process:

e Start with the first person (head of the list) and proceed to the kth person by traversing the list.

e Remove the kth person from the circle. This involves changing the next pointer of the (k — 1)th
person to point to the (k + 1)th person.

e Continue the process, starting from the next person in the circle, until only one person remains.
Finally, identify the Last Survivor: The last remaining node in the list represents the position Josephus
should choose. Return this position.

Provide the time complexity and space complexity of the solution.

Me telling you guys about Josephus lore

Step 1: Create a circular linked list of size n

Step 2: From head node, traverse k next pointers

‘{*
t

Step 3: Remove kth node

CHel, | 4D
_ Holy Moly! (

'ry (@@
o

\ Colylic)

@ ’é>)
o

Step 3: Remove kth node

Step 3: Repeat until 1 node left

Step 3: Repeat until 1 node left

Provide the time and space
complexity of the algorithm

Step 3: Repeat until 1 node left

No

