
PSO 2
Recurrences and Trees



Announcements

TA Office hours has started, see ed

HW 1 due Thursday 11:59PM
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From last week..

This was false. One way to see this: group terms

n! = n   x   (n - 1) x … x   (n/2 + 1)   x   (n/2)   x … x   2   x   1

n! = (n x 1)  x   ((n -1) x 2)  x … x ((n/2 + 1) x (n/2)) 

Observe: all terms are ≥ n (there are n/2 terms)

n! ≥  nn/2





Find T(n) = “number of times + is called when we run REC1(n)”

=

Recursive functions have a base case and a recursive case

Base case: T(__) = ______
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Find T(n) = “number of times + is called when we run REC1(n)”

=
How many (non-recursive) +’s? 2 

then count recursive calls 
Recursive calls? 

Recursive case: first calculate non-recursive work.. 

Base case: T(0) = 2



How many (non-recursive) +’s? 2 

Recursive calls? Rec(n - 1), Rec(n -3)
T(n) = 2 + T(n - 1) + T(n - 3)



(important: include both base case and recursive case!)

Final answer:
T(0) = 2

T(n) = 2 + T(n - 1) + T(n - 3)
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Recursive case:



Unroll/use iterations?



… kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels
3. Derive the sum and closed form
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What is the problem with a tree?



We usually like recurrences of this form

E.g question 1 recurrences

Solution: Variable change! But to what value?
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We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = T(2m)

This is just merge sort! O(mlogm) = O(log n * (log log n)) 
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Right shift ~(m/2) times : sqrt(n) = nm…nm/2+1nm/2n2n1

I can only right 
shift log m times == loglogn tree height

On each level, logn work, so T(n) = log(n) x loglog(n) 


