PSO 2

Recurrences and Trees

Announcements

TA Office hours has started, see ed

HW 1 due Thursday 11:59PM

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this:

nt=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

n=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

n!=(nx1) X ...

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

nt=n x (N-T)x..x (N/2+1) x (n/2) x..x 2 x 1

\V/

nt=(Nx1) x ((n -1)x2)

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

nt=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

nt=NxT) x ((n-1)x2) x>x((n/2 + 1) x(n/2))

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

nt=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

n! = (X 70X X

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

nt=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

n! = (X 70X X

Observe: all terms are = n (there are n/2 terms)

From last week..

nlosn ¢ Q(n!)

This was false. One way to see this: group terms

nt=n x (N-T)x..x (N/2+1) x (N/2) x..x 2 x 1

n! = (X 70X X

nl > nn2

Observe: all terms are = n (there are n/2 terms)

Question 1

(Recursion Tree) Find a recurrence relationship which describes the running time of the following
algorithms. For simplicity we will measure running times by the number of addition operations (+).

1: function Recl(n: Z")

2: if n <0 then

3 return n+n

4: end if

5z val <0

6: val + val + REC1(n — 1)
T: val « val + RECl(n — 3)
8: return val

9: end function

1: function REC2(n : Z1)

2: if n <0 then

3: return ()

4: end if

5: val < ()

6: for i from 1 ton — 1 do
7: val < val + REC2(1)
8: end for

0: return val
10: end function

1: function REc3(n: Z1)

2: if n <0 then

3:

return n +n

1: function REcl(n: Z1)
2: if n <0 then

3: return n +n

4: end if

5: val <0

6: val + val + REC1(n — 1)
7: val « val + REC1(n — 3)
8: return val

9: end function

(Recursion Tree) Find a recurrence relationship which describes the running time of the following
algorithms. For simplicity we will measure running times by the number of addition operations (+).

Find T(n) = “number of times + is called when we run REC1(n)”

Recursive functions have a base case and a recursive case

Base case: T()=

1: function REcl(n: Z1)
2: if n <0 then

3: return n +n Base case: T(0) =2
1: end if

5: val <0

6: val + val + REC1(n — 1)

7: val « val + REC1(n — 3)

8: return val

9: end function

(Recursion Tree) Find a recurrence relationship which describes the running time of the following
algorithms. For simplicity we will measure running times by the number of addition operations (+).

Find T(n) = “number of times + is called when we run REC1(n)”

Recursive case: first calculate non-recursive work..

How many (non-recursive) +'s?

1: function REcl(n: Z1)
2: if n <0 then

3: return n +n Base case: T(0) =2
1: end if

5: val <0

6: val + val + REC1(n — 1)

7: val « val + REC1(n — 3)

8: return val

9: end function

(Recursion Tree) Find a recurrence relationship which describes the running time of the following
algorithms. For simplicity we will measure running times by the number of addition operations (+).

Find T(n) = “number of times + is called when we run REC1(n)”

Recursive case: first calculate non-recursive work..

How many (non-recursive) +'s? 2
then count recursive calls

Recursive calls?

1: function RECl(n: Z1)
2: if n <0 then

3: return n +n

4: end if

5: val <0

6: val + val + REC1(n — 1)
7: val « val + REC1(n — 3)
8: return val

9: end function

How many (non-recursive) +'s? 2

Recursive calls? Rec(n - 1), Rec(n -3)

T(n)=2+T(n-1)+T(n-3)

1: function REcl(n: Z1)

2:
3:
4:
5
6:
{5
8:

if n <0 then

return n+n
end if
val + 0
val « val + REC1(n — 1)
val « val + REC1(n — 3)
return val

9: end function

(Recursion Tree) Find a recurrence relationship which describes the running time of the following
algorithms. For simplicity we will measure running times by the number of addition operations (+).

Final answer;

T(0) =

2

TnN)=2+T(n-1)+T(n -3)

(important: include both base case and recursive case!)

1: function REC2(n : Z1)
2: if n <0 then

3: return ()

4: end if

5: val <0

6: for i from 1 ton — 1 do
7: val < val + REC2(1)
8: end for

0: return val

10: end function

Base case: T()=

Recursive case:

How many (non-recursive) +’s?

Recursive calls?

1: function REC3(n : Z1)
2: if n < () then

3: return n +n
4: end if
5: val + 0

6: val + val + REC3 (lg])
7: val + val + REC3 ([-Z;l])
1

8: for i from 1 ton — 1 do
9: val +— val + 1

10: end for

11: return val

12: end function

Base case: T()=

Recursive case:

How many (non-recursive) +’s?

Recursive calls?

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(z) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + v/n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

Unroll/use iterations?

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(z) = 1
for any = < 1.)

(1) T(n) =2T(n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

Warning: Solving this T(n) using iterationsis a
bad idea!

... kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels

3. Derive the sum and closed form

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

N

1. Draw out the tree

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

/ \ 1. Draw out the tree

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

N
/ \ 1. Draw out the tree
/4

V/n/4 V/n/4

y \ y \

V/n/16 V/n/16 /n/16 \/n/16

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7'(x) = 1
for any z < 1.)

(1) T(n) = 2T (n/4) + /n
(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

PN

/4 Vn/4 2. Find the cost at the ith
VAN PR level and the number
B ST ST T of levels

Cost at first level:
Cost at second level:

Cost at ith level: # levels:

Question 1

(Recursion Tree) Give a big-O closed form for each of the following recurrences. (Assume that 7T'(z) = 1
for any x < 1.)

(1) T(n) = 2T (n/4) + v/n
(2) T(n)=T(n/2)+T(n/3)+T(n/6)+n

PN

V/n/4 Vn/4
/ \ v \
\/n/16 \/n/16 \/n/16 \/n/16

3. Derive the sum and
Cost at ith level : Jo closed form

Number o f lavels: [Og A

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

Draw out the tree

Find the cost at the ith
level and the number
of levels

Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

n

TN

n/2 n/6 n/3

1. Draw out the tree
2. Find the cost at the ith
level and the number

of levels
3. Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

n/2 n/6 n/3
/ l \ / \ \ / I \ 1. Draw out the tree
2. Find the cost at the ith
n/A n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9 level and the number
of levels

3. Derive the sum and
closed form

(2) T(n) =T(n/2)+T(n/3)+T(n/6)+n

2. Find the cost at the ith
level and the number
of levels

n/4 n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9

Cost at first level:
Cost at second level:
Cost at ith level: # levels:

oy

QI 55 g [0) ._.[9‘.0 <4 lg.

(2) T(n) =T(n/2)+T(n/3)+T(n/6) +n

n/2 n/6 n/3
n/4 n/12 n/6 n/12 n/36 n/18 n/6 n/18 n/9

(o5t at itk level N
Numbor o f lavels’ OClyn)

3. Derive the sum and
closed form

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

What is the problem with a tree?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form

S(n) = aS(n/p) + f(n),

E.g question 1 recurrences

Solution: Variable change! But to what value?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) + f(n),

Change variable: m =

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) = aS(n/ﬂ) & f(n),

Change variable: m = log n Pla™] = 2T(2m/2) + m.

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) & f(n),

Change variable: m = log n Pla™] = 2,T(27n/‘2) + m.

Change equation: S(m) =

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — aS(n/ﬂ) & f(n),

Change variable: m = log n T(Q"m.) - 2T<2m/2) + m.

Change equation: S(m) = T(2™)

S(m) =25(m/2) + m,

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

We usually like recurrences of this form S(n) — C{S(n/ﬁ) & f(n),

Change variable: m = log n T(2-'1'1‘1.> - 2T(2m/2) + m.

Change equation: S(m) = T(2™)

S(m) =25(m/2) + m,

This is just merge sort! O(mlogm) = O(log n * (log log n))

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n/ 2) + n?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(\/n) + logn

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n/ 2) + n?

Read ninbinary: n__ ...n,n
ogn 21

Whatisn/27?

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) = 2T(y/n) +logn

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n/ 2) + n?

Read n in binary: Mg ne-- MMy

. I can only right == |0g n tree height
Whatisn /27 shift log n times

Right shift:n/2 = Mg nee Ny

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

Intuition for O(log n * (log log n)) bound

Now, how does sqrt(n) look?

Read nin binary: n_...nn,

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

Intuition for O(log n * (log log n)) bound

?
Now, how does sqrt(n) look? | can only right == log m tree height

shift log m times == loglogn tree height

Read nin binary: n_...nn,

Right shift ~(m/2) times : sqrt(n) =n_...n

m m/2+1

Question 2

(Change a Variable) Give a big-O closed form for the following recurrence.

T(n) =2T(v/n) + logn

Right shift ~(m/2) times : sqrt(n) =n_...n_, ..

| can only right

shift log m times == loglogn tree height

On each level, logn work, so T(n) = log(n) x loglog(n)

