
PSO 2
Recurrences and Trees

Announcements

TA Office hours has started, see ed

HW 1 due Thursday 11:59PM

From last week..

This was false. One way to see this:

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x …

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x ((n -1) x 2)

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x ((n -1) x 2) x … x ((n/2 + 1) x (n/2))

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x ((n -1) x 2) x … x ((n/2 + 1) x (n/2))

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x ((n -1) x 2) x … x ((n/2 + 1) x (n/2))

Observe: all terms are ≥ n (there are n/2 terms)

From last week..

This was false. One way to see this: group terms

n! = n x (n - 1) x … x (n/2 + 1) x (n/2) x … x 2 x 1

n! = (n x 1) x ((n -1) x 2) x … x ((n/2 + 1) x (n/2))

Observe: all terms are ≥ n (there are n/2 terms)

n! ≥ nn/2

Find T(n) = “number of times + is called when we run REC1(n)”

=

Recursive functions have a base case and a recursive case

Base case: T(__) = ______

Find T(n) = “number of times + is called when we run REC1(n)”

=
How many (non-recursive) +’s?

Recursive case: first calculate non-recursive work..

Base case: T(0) = 2

Find T(n) = “number of times + is called when we run REC1(n)”

=
How many (non-recursive) +’s? 2

then count recursive calls
Recursive calls?

Recursive case: first calculate non-recursive work..

Base case: T(0) = 2

How many (non-recursive) +’s? 2

Recursive calls? Rec(n - 1), Rec(n -3)
T(n) = 2 + T(n - 1) + T(n - 3)

(important: include both base case and recursive case!)

Final answer:
T(0) = 2

T(n) = 2 + T(n - 1) + T(n - 3)

Base case: T(__) = ______

How many (non-recursive) +’s?

Recursive calls?

Recursive case:

Base case: T(__) = ______

How many (non-recursive) +’s?

Recursive calls?

Recursive case:

Unroll/use iterations?

… kind of, we will see that trees help us organize better!

1. Draw out the tree
2. Find the cost at the ith level and the number of levels
3. Derive the sum and closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

Cost at first level:
Cost at second level:
Cost at ith level: # levels:

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed formCost at first level:

Cost at second level:
Cost at ith level: # levels:

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed formCost at first level:

Cost at second level:
Cost at ith level: # levels:

1. Draw out the tree
2. Find the cost at the ith

level and the number
of levels

3. Derive the sum and
closed form

What is the problem with a tree?

We usually like recurrences of this form

E.g question 1 recurrences

Solution: Variable change! But to what value?

We usually like recurrences of this form

Change variable: m =

We usually like recurrences of this form

Change variable: m = log n

We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) =

We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = T(2m)

We usually like recurrences of this form

Change variable: m = log n

Change equation: S(m) = T(2m)

This is just merge sort! O(mlogm) = O(log n * (log log n))

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n / 2) + n?

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n / 2) + n?

Read n in binary: nlog n…n2n1

What is n / 2?

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n / 2) + n?

Read n in binary: nlog n…n2n1

What is n / 2?
Right shift: n / 2 = nlog n…n2n1

I can only right
shift log n times

== log n tree height

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n / 2) + n?

Read n in binary: nm…n2n1

Right shift: n / 2 = nlog n…n2n1

I can only right
shift log n times == log n tree height

Now, how does sqrt(n) look?

Intuition for O(log n * (log log n)) bound

First, how can we interpret T(n) = 2T(n / 2) + n?

Read n in binary: nm…n2n1

Right shift ~(m/2) times : sqrt(n) = nm…nm/2+1nm/2n2n1

Now, how does sqrt(n) look?

Right shift: n / 2 = nlog n…n2n1

I can only right
shift log n times == log n tree height

I can only right
shift log m times

== log m tree height
== loglogn tree height

Right shift ~(m/2) times : sqrt(n) = nm…nm/2+1nm/2n2n1

I can only right
shift log m times == loglogn tree height

On each level, logn work, so T(n) = log(n) x loglog(n)

