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This forms a ‘cut’
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The light edge of this cut has weight 1
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[What happens in the picture?]
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[What happens in the picture?] G’

G’’



2
1

3
2

1
3

5

1
2

1Pf: AFtSoC e is not in a MST

In an MST, G’ and G’’ must be 
connected.

[How can we get our contradiction?]

G’

G’’



“If e is the light edge of some cut, then it is in every MST.”

Show that this is false.



Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!
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Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

(Me and my bois have taken all the weights off the graph (we need them for 
our super set))
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Proof by picture!

AFtSoC there are two different MSTs T1 and T2 
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Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T1 and T2 differ on some edges e1,e2. Consider cut C defined above.

C

V - C



Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

By our assumption, say e1 is our unique light edge in cut C i.e., wt(e1) < wt(e2)

C

V - C



Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

But if wt(e1) < wt(e2), then we can lower the weight of MST T2 by taking e1 instead of e2 

C

V - C



But if wt(e1) < wt(e2), then we can lower the weight of MST T2 by taking e1 instead of e2 

C

V - C



Time for the counter example



Let this be the graph G and mst T



Let this be the graph G and mst T

Suppose we define V’ as follows



Suppose we define V’ as follows. This is T’, T induced by V’ 

What went wrong? Why isn’t a T’ MST? 
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Let this be the graph G and mst T

Suppose we define V’ as follows. This is T’, T induced by V’

WTS: this is an MST of V’



Let this be the graph G and mst T

WTS: this is an MST of V’

AFtSoC there is a cheaper tree T’’ differing in edges above (added , removed)



Let this be the graph G and mst T

WTS: this is an MST of V’

Back in the original graph we originally had MST T 



Let this be the graph G and mst T

WTS: this is an MST of V’

Removing the red edge and adding the green edge gives us a cheaper tree 



Simple Intuition of Prim’s algorithm?



Dijkstra                                                             Prim’s Prim’s MST



Pseudocode 

//Initialize prev, dist

Let dist[v] = current min. edge to v

while pq is not empty:

Vertex u <- pq.pop()

for each edge (u,v):

if wt(u,v) < dist[v]:

update dist and pq

Prim’s MST

What we can do with an adj matrix
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Pseudocode 

//Initialize prev, dist

Let dist[v] = current min. edge to v

while pq is not empty:

Vertex u <- pq.pop()

for each edge (u,v):

if wt(u,v) < dist[v]:

update dist and pq

Prim’s MST

What we can do with an adj matrix
What we cannot do (right away)



//Initialize prev, dist

Let T = {start}

_______________:

___________________

___________________

___________________:
if wt((_,_)) < dist[_]:

_________________

______________

//Initialize prev, dist

Let dist[v] = current min. edge to v
while pq is not empty:

Vertex u <- pq.pop():

for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq

Prims(G,start):



Kruskal 

- Sort edges by increasing order of their weights // O(?) time
- Run a Union Finding procedure // ~O(|E|) time

The values of the edges are bounded by |V|. What’s a good sorting algorithm for this?
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Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a 
   The last occurrence of pattern a



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount – in this ex. We move one after mismatch 

T

P
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A good  Boyer-Moore Example

Mismatch!

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount 



A good  Boyer-Moore Example

Mismatch! 

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount  (Since no o in pattern, latter case)


