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Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S, V — §), if its weight is the minimum of any
edge crossing the cut. Show that:

e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

e the converse is not true, and give a simple counter-example of a connected graph such that there
exists a cut C := (S,V — §), in which (u,v) is a light-edge crossing the cut C but does not form a
MST of the graph.

2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T" be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if T is connected, then T'
is an MST of G'.



Question 2

(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?
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(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

This forms a ‘cut’



Question 1

(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

The light edge of this cut has weight 1



e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.




e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

Pf: AFtSoC e is not in a MST

[What happens in the picture?]
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e if an edge (u,v) is contained in some MST, then it is a light-edge crossing some cut of the graph.

Pf: AFtSoC e is not in a MST G

In an MST, G’ and G” must be 2
connected.

[How can we get our contradiction?]



Question 1
(Minimum spanning trees)

1. An edge is called a light-edge crossing a cut C := (S.V — §). if its weight is the minimum of any
edge crossing the cut. Show that:

“If e is the light edge of some cut, then itis in every MST.”

Show that this is false.



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!
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crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

(Me and my bois have taken all the weights off the graph (we need them for
our super set))
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Suppose each cut has a unique light edge. WTS: the graph has a unique MST
Proof by picture!

o

T, and T, differ on some edges e.,c,. Consider cut C defined above.



2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!
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2. Show that a graph has a unique MST, if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

By our assumption, say e is our unique light edge in cut C i.e., wi(e,) < wi(e,)



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
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Proof by picture!
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But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

But if wt(e,) < wt(e,), then we can lower the weight of MST T, by taking e, instead of ¢,



2. Show that a graph has a unique MST. if for every cut of the graph, there is a unique light-edge
crossing the cut. Show that the converse is not true by giving a counter-example.

Time for the counter example



3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if 7" is connected, then T
is an MST of G .

Let this be the graph Gand mst T
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3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if 7 is connected, then T
is an MST of G'.

: o
Suppose we define V’ as follows. This is T’, T induced by V’

What went wrong? Why isn'ta T' MST?
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3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V'. Show that if T° is connected, then T
is an MST of G .

Let this be the graph Gand mst T

Suppose we define V’ as follows. This is T’, T induced by V’

WTS: this is an MST of V’



3. Let T be an MST of a graph G = (V, E), and let V' be a subset of V. Let T be the subgraph of T
induced by V', and let G be the subgraph of G induced by V' . Show that if 7 is connected, then T
is an MST of G .

Let this be the graph Gand mst T

WTS: this is an MST of V’

AFtSoC there is a cheaper tree T” differing in edges above (added , removed)



3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V' | and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’
Back in the original graph we originally had MST T



3. Let T be an MST of a graph G = (V, E), and let V' be
induced by V' | and let G be the subgraph of G induced 1
is an MST of G'.

Let this be the graph Gand mst T

WTS: this is an MST of V’

Removing the red edge and adding the green edge gives us a cheaper tree



Question 2

(Prim’s & Kruskal’s algorithm)
1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
tion of Prim’s algorithm for this case that runs in O(|V[?) time.

2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?

Simple Intuition of Prim’s algorithm?



Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
. . - . . . . . ’ 12 .
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Dijkstra Prim’s Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V) algorithm DijkstraShertestPath(G(V,E), s€V)
let dist:V - 1Z let dist:V->1Z
let prev:V -V let prev:V -V
let Q be an empty priority queue let Q be an empty priority queue
dist[s] « @ dist[s] « ©
for each vEV do for each veV do
if v#s then if v#s then
dist[v] « o dist[v] « o
end if end if
prev[v] « -1 prev[v] « -1
Q.add(dist[v], v) Q.add(dist[v], v)
end for end for
while Q is not empty do while Q is not empty do
u « Q.getMin() u « Q.getMin()
for each w €V adjacent to u still in Q do for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w) d « -distful—+ weight(u, w)
if d < dist[w] then if d < dist[w] then
dist[w] « d dist[w] « d
previw] « u previw] « u
Q.set(d, w) Q.set(d, w)
end if end if
end for end for
end while end while
return dist, prev return dist, prev

end algorithm end algorithm



(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
2 R sl . . 3 q 12 2
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v €V do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d ¢ -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:
update dist and pq

What we can do with an adj matrix
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(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
A . Sy . . 2 3 - 12 2
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Pseudocode
Prim’s MST
algorithm DijkstraShertestPath(G(V,E), s€V) //lnltlahze prev’ dlSt
let dist:V->1Z
let prev:V -V . :
let z be an empty priority queue Let dlSt[V] - Current mln edge tO V
dist[s] « @
S while pq is not empty:

dist[v] ¢ o
end if

rev[v] « - <_
dg{;adg(}iist[:})], v) Vertex u pqpop()

while Q is not empty do fOr eaCh edge (U,V)

u « Q.getMin()
for each w €V adjacent to u still in Q do

gfed < dist[w]w?tihger:lt(u, ¥ If Wt(U,V) < dISt[V]
dist[w] « d
dZ?E“JJZifJB update dist and pq
ende:‘:or1
end while
return dist, prev What we can do with an adj matrix

end algorithm



(Prim’s & Kruskal’s algorithm)

Question 2

1. Suppose that we represent the graph G = (V| E) as an adjacency-matrix. Give a simple implementa-
2 R sl . . 3 q 12 2
tion of Prim’s algorithm for this case that runs in O(|V|*) time.

Prim’s MST

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > 1Z
let prev:V -V
let Q be an empty priority queue

dist[s] « @
for each v €V do
if v #s then
dist[v] « o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d ¢ -distful—+ weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Pseudocode
/lInitialize prev, dist
Let dist[v] = current min. edge to v
while pq is not empty:
Vertex u <- pg.pop()
for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq

What we can do with an adj matrix
What we cannot do (right away)



Question 2
(Prim’s & Kruskal’s algorithm)

1. Suppose that we represent the graph G = (V, E) as an adjacency-matrix. Give a simple implementa-
. . . . . . = 12 .
tion of Prim’s algorithm for this case that runs in O(|V|?) time.

Prims(G,start):
/lInitialize prev, dist /Mnitialize prev, dist
Let dist[v] = current min. edge to v Let T = {start}

while pq is not empty:

Vertex u <- pg.pop():

for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq if wi((_, )) < dist[_]:




2. Suppose that all edge weights in a graph are integers in the range from 1 to |V|. How fast can you
make Kruskal's algorithm run?

Kruskal

- Sort edges by increasing order of their weights // O(?) time
- Run a Union Finding procedure // ~O(|E|) time

The values of the edges are bounded by |V|. What’s a good sorting algorithm for this?



Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward
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Question 3

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
9

Boyer-Moore: lteratively compare pattern P with target, going backward

T[0] does not equal P[0]! Next steps.. We mismatched on target a
The last occurrence of pattern a



Question 3
(Backward pattern matching)
The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via
the following questions:
1. Run Boyer-Moore algorithm in the following worst-case scenario:

T:=aaa---a and P := baaaaa.
N g,

9

Boyer-Moore: Iteratively compare pattern P with target, going backward

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount — in this ex. We move one after mismatch
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A good Boyer-Moore Example

Boyer-Moore: Iteratively compare pattern P with target, going backward

-
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A good Boyer-Moore Example

Boyer-Moore: Iteratively compare pattern P with target, going backward
T

0 o X X X X o o (0]

P X X X X

Mismatch!

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount



A good Boyer-Moore Example

Boyer-Moore: Iteratively compare pattern P with target, going backward
T

0 o X X X X o o (0]

P X X X X

Mismatch!

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount (Since no o in pattern, latter case)



