
PSO 12
MST, Prim/Kruskal, (Backwards) Pattern Matching

Slides @ justin-zhang.com/teaching/CS251

http://justin-zhang.com/teaching/CS251

Say I define C as

2
1

3

2

3

1
3

5

5

2
1

2
1

3

2

3

1
3

5

5

2
1

This forms a ‘cut’

2
1

3

2

The light edge of this cut has weight 1

2
1

3
2

3

1
3

5

5

2
1

6
Pf:

2
1

3
2

3

1
3

5

5

2
1

6
Pf: AFtSoC e is not in a MST

[What happens in the picture?]

2
1

3
2

1
3

5

1
2

1Pf: AFtSoC e is not in a MST

[What happens in the picture?] G’

G’’

2
1

3
2

1
3

5

1
2

1Pf: AFtSoC e is not in a MST

In an MST, G’ and G’’ must be
connected.

[How can we get our contradiction?]

G’

G’’

“If e is the light edge of some cut, then it is in every MST.”

Show that this is false.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

2
1

3

2

3

1
3

5

5

2
1

6

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

(Me and my bois have taken all the weights off the graph (we need them for
our super set))

2

3

2

3

1
3

55

1
2

1
6

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

AFtSoC there are two different MSTs T1 and T2

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

AFtSoC there are two different MSTs T1 and T2

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

AFtSoC there are two different MSTs T1 and T2

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T1 and T2 differ on some edges e1,e2

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T1 and T2 differ on some edges e1,e2. Consider cut C defined above.

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

T1 and T2 differ on some edges e1,e2. Consider cut C defined above.

C

V - C

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

By our assumption, say e1 is our unique light edge in cut C i.e., wt(e1) < wt(e2)

C

V - C

Suppose each cut has a unique light edge. WTS: the graph has a unique MST

Proof by picture!

But if wt(e1) < wt(e2), then we can lower the weight of MST T2 by taking e1 instead of e2

C

V - C

But if wt(e1) < wt(e2), then we can lower the weight of MST T2 by taking e1 instead of e2

C

V - C

Time for the counter example

Let this be the graph G and mst T

Let this be the graph G and mst T

Suppose we define V’ as follows

Suppose we define V’ as follows. This is T’, T induced by V’

What went wrong? Why isn’t a T’ MST?

Let this be the graph G and mst T

Suppose we define V’ as follows

Let this be the graph G and mst T

Suppose we define V’ as follows. This is T’, T induced by V’

WTS: this is an MST of V’

Let this be the graph G and mst T

WTS: this is an MST of V’

AFtSoC there is a cheaper tree T’’ differing in edges above (added , removed)

Let this be the graph G and mst T

WTS: this is an MST of V’

Back in the original graph we originally had MST T

Let this be the graph G and mst T

WTS: this is an MST of V’

Removing the red edge and adding the green edge gives us a cheaper tree

Simple Intuition of Prim’s algorithm?

Dijkstra Prim’s Prim’s MST

Pseudocode

//Initialize prev, dist

Let dist[v] = current min. edge to v

while pq is not empty:

Vertex u <- pq.pop()

for each edge (u,v):

if wt(u,v) < dist[v]:

update dist and pq

Prim’s MST

What we can do with an adj matrix

Pseudocode

//Initialize prev, dist

Let dist[v] = current min. edge to v

while pq is not empty:

Vertex u <- pq.pop()

for each edge (u,v):

if wt(u,v) < dist[v]:

update dist and pq

Prim’s MST

What we can do with an adj matrix

Pseudocode

//Initialize prev, dist

Let dist[v] = current min. edge to v

while pq is not empty:

Vertex u <- pq.pop()

for each edge (u,v):

if wt(u,v) < dist[v]:

update dist and pq

Prim’s MST

What we can do with an adj matrix
What we cannot do (right away)

//Initialize prev, dist

Let T = {start}

_______________:

___________________:
if wt((_,_)) < dist[_]:

//Initialize prev, dist

Let dist[v] = current min. edge to v
while pq is not empty:

Vertex u <- pq.pop():

for each edge (u,v):
if wt(u,v) < dist[v]:

update dist and pq

Prims(G,start):

Kruskal

- Sort edges by increasing order of their weights // O(?) time
- Run a Union Finding procedure // ~O(|E|) time

The values of the edges are bounded by |V|. What’s a good sorting algorithm for this?

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a
 The last occurrence of pattern a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount – in this ex. We move one after mismatch

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:

A good Boyer-Moore Example

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

A good Boyer-Moore Example

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

A good Boyer-Moore Example

Mismatch!

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount

A good Boyer-Moore Example

Mismatch!

o o x x x x o o o

x x x x

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

Move P (to align target o with pattern o) OR (one after target mismatch)

Whichever moves P the least amount (Since no o in pattern, latter case)

