
PSO 11

Kosaraju, Dijkstra, Bellman Ford

Kosaraju’s Algorithm

outputs:

How does it work:

Phase 1:

Phase 2:

Intuition of Kosaraju’s (Phase 1)

Phase 1: Find all unidirectional connected components with DFS

Intuition of Kosaraju’s (Phase 1)

Phase 1: Find all unidirectional connected components with DFS

Intuition of Kosaraju’s (Phase 2)

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Dfs trace: 1,2,3,4,5,6,7

Intuition of Kosaraju’s (Phase 2)

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Dfs trace: 1,2,3,4,5,6,7

Intuition of Kosaraju’s (Phase 2)

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Dfs trace: 1,2,3,4,5,6,7

P1

P2

Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen to L stack

//break once all nodes marked

Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Seen L

7
5
3
9
4
1

Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Seen L

1
4
9
3
5
7

Phase 1: finding all connections

Seen L

1
4
9
3
5
7

Skip to next
unseen (2)

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Phase 1: finding all connections

Seen L

1
4
9
3
5
7

Skip to next
unseen (2)

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Phase 1: finding all connections

Seen L

1
4
9
3
5
7

Skip to next
unseen (2)

10
8
6
2

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Phase 1: finding all connections

Seen L

2
6
8
10
1
4
9
3
5
7

Phase 1: finding all connections

Seen L

2
6
8
10
1
4
9
3
5
7

Insight from before:
SCCs are inside these DFS
traversals

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

2
6
8
10
1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

2
6
8
10
1
4
9
3
5
7PRO TIP: Bring a sharpie to the midterm

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

2
6
8
10
1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

6
8
10
1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

6
8
10
1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

1
4
9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

9
3
5
7

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

 L

3
5
7

Summary: 3 SCCs Recall the first phase

Partitioned the second
(black) dfs traversal into 2
SCCs

Dijkstra - Find shortest paths between (input starting vertex s) and all other
vertices.

- Single source shortest paths

Dijkstra

For a vertex s, finds shortest paths to all vertices. At
each step..

- Consider current closest vertex u (priority queue)
- Greedily update path lengths to u’s neighbors

- “Relaxing the edge”
- Mark as visited

For your studies, a walkthrough of how Dijstra works..

Start at A

Update based on A’s edges

Next on the prior. Q is F

Why didn’t we update D?

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time

a

b

c

2

1

-251

A B C

dist 0 inf inf

prev A -1 -1

pQ

1. (a,0)
2. (b,inf)
3. (c,inf)

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time

a

b

c

2

1

-251

A B C

dist 0 2 1

prev A -1 -1

pQ

1. (c,1)
2. (b,2)

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time

a

b

c

2

1

-251

A B C

dist 0 2 1

prev A -1 -1

pQ

1. (c,1)
2. (b,2)

We take c off here, but
there is clearly a shorter
(negative) path!

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time

a

b

c

2

1

-251

A B C

dist 0 2 1

prev A -1 -1

pQ

1. (b,2)

By the time we encounter
b and find the path to c, c
no longer in the pQ!!!

This seems plausible…

Can we update the previous example so

that it actually finds the shortest path a -> c
a

b

c

2

1

-251

a

b

c

1

2

-251

A B C

dist

prev

pQ

1.
2.
3.

Other examples that work

a

b

c

1

2

-251

a

b

c

a

b

c

Another way to see this

Update step correct
regardless if negative edge

We only have an error if we don’t
update (see prev example)

a

b

c

2

1

-251

Relaxing an edge: checking if the current best known distance is better than the
distance of the current edge

Basically, this step

a

b

e

1

1

A B C D E

dist

prev

pQ

1.
2.
3.
4.
5.

c d
1 1

1

