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Kosaraju’s Algorithm

outputs: 

How does it work:

Phase 1:

Phase 2:



Intuition of Kosaraju’s (Phase 1)

Phase 1: Find all unidirectional connected components with DFS
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Phase 2: Find SCCs within the unidirectional components by reverse DFS

Dfs trace: 1,2,3,4,5,6,7
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Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen to L stack

//break once all nodes marked



Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Seen                               L

7
5
3
9
4
1



Phase 1: finding all connections

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Seen                               L

1
4
9
3
5
7



Phase 1: finding all connections

Seen                               L

1
4
9
3
5
7

Skip to next 
unseen (2)

From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked



From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Phase 1: finding all connections

Seen                               L

1
4
9
3
5
7

Skip to next 
unseen (2)



From v = 1,...,10:
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From v = 1,...,10:

Run DFS(v)

Transfer seen stack to L stack

//break once all nodes marked

Phase 1: finding all connections
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Insight from before:
SCCs are inside these DFS 
traversals



Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges 
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++
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1. Reverse edges 
2. While unmarked vertices:

a. i = L.pop()
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Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges 
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++
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Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges 
2. While unmarked vertices:

a. i = L.pop()
b. //if i is marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++
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Summary: 3 SCCs Recall the first phase

Partitioned the second 
(black) dfs traversal into 2 
SCCs



Dijkstra - Find shortest paths between (input starting vertex s) and all other 
vertices. 

- Single source shortest paths



Dijkstra

For a vertex s, finds shortest paths to all vertices. At 
each step..

- Consider current closest vertex u (priority queue)
- Greedily update path lengths to u’s neighbors

- “Relaxing the edge”
- Mark as visited

For your studies, a walkthrough of how Dijstra works..



Start at A



Update based on A’s edges



Next on the prior. Q is F



Why didn’t we update D?



























Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time
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3. (c,inf)
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We take c off here, but 
there is clearly a shorter 
(negative) path!



Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time
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1. (b,2)

By the time we encounter 
b and find the path to c, c 
no longer in the pQ!!!



This seems plausible…

Can we update the previous example so 

that it actually finds the shortest path a -> c
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Other examples that work
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Another way to see this

Update step correct 
regardless if negative edge

We only have an error if we don’t 
update (see prev example)

a

b

c

2

1

-251



Relaxing an edge: checking if the current best known distance is better than the 
distance of the current edge

Basically, this step
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