

Question 1
(Kosaraju’s algorithm)

(a) Run phase 1 of Kosaraju’s algorithm and show the L stack at the end of phase 1. (Note: You should
assume that that we loop through nodes in numerical order (ascending) and that each adjacency
list are also sorted in ascending order e.g., the adjacency list for node 1 is (4,5,9))

5 o

(b) Run phase 2 of Kosaraju’s algorithm and list the strongly connected components (in topological
order).

Question 2
(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

2. Given a weighted, directed graph G = (V, F) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

3. Your classmate claims that Dijkstra’s algorithm relaxes the edges of every shortest path in the graph
in the order in which they appear on the path. Show that him/her is mistaken by constructing a directed
graph for which the Dijkstra’s algorithm could relax the edges of a shortest path out of order.

Hint: The shortest path between two vertices in the graph is not necessarily unique.

Question 3

(Bellman-Ford algorithm)

1. Why does the Bellman-Ford algorithm only require |V| — 1 passes?

2. Why will the last pass (|V| — 1) through the edges will determine if there are any negative weight
cycles or not?

(2) @ Kosaraju’s Algorithm

outputs:

How does it work:
Phase 1:
Phase 2:

Intuition of Kosaraju’s (Phase 1)

Strongly Connected Component Strongly Connected Component

Phase 1: Find all unidirectional connected components with DFS

Intuition of Kosaraju’s (Phase 1)

Strongly Connected Component Strongly Connected Component

Phase 1: Find all unidirectional connected components with DFS

Intuition of Kosaraju’s (Phase 2) Dfs trace: 1,2,3,4,5,6,7

Strongly Connected Component Strongly Connected Component

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Intuition of Kosaraju’s (Phase 2) Dfs trace: 1,2,3,4,5,6,7

Strongly Connected Component Strongly Connected Component

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Intuition of Kosaraju’s (Phase 2) Dfs trace: 1,2,3,4,5,6,7

Strongly Connected Component Strongly Connected Component

Phase 2: Find SCCs within the unidirectional components by reverse DFS

Strongly Connected Component Strongly Connected Component

Strongly Connected Component Strongly Connected Component l l

P1

Strongly Connected Component Strongly Connected Component

H’Phase 1: finding all connections

Transfer seen to L stack

//break once all nodes marked

H’Phase 1: finding all connections

Transfer seen stack to L stack

//break once all nodes marked

- h O WO N

Seen L

H’Phase 1: finding all connections

Transfer seen stack to L stack

//break once all nodes marked

—rl~owohs-a

Seen

H’Phase 1: finding all connections

Skip to next
Run DFS(v) unseen (2)

Transfer seen stack to L stack

//break once all nodes marked

—rl~owohs-a

Seen

H’Phase 1: finding all connections

Skip to next
Run DFS(v) unseen (2)

Transfer seen stack to L stack

//break once all nodes marked

—rl~owohs-a

Seen

V’Phase 1: finding all connections

Skip to next
Run DFS(v) unseen (2)

Transfer seen stack to L stack

//break once all nodes marked

(e
—rl~owohs-a

V’Phase 1: finding all connections

Fromv=1,...,10:
Run DFS(v)
Transfer seen stack to L stack

//break once all nodes marked

o

— ~NOO WO 2200DN

Seen

H’Phase 1: finding all connections

Insight from before:
SCCs are inside these DFS
traversals

o

— (NOWOhx=20DN

Seen

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

o

NO WO 2=200N

ﬂ

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

o

NOOWORr-=2=200N
W
]
E
£
&

PRO TIP: Bring a sharpie to the midterm

ﬂ

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

o

NOWOr-2200N

ﬂ

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

o

NOO WO ->200

ﬂ

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

V_‘\l(ﬂw@-b—\$00®

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

NOOWoOokr~r-

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

NOOWoOokr~r-

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges
2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

~NOTWwW O b P

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

y—‘\lmwo

Phase 2: Reverse graph to filter out non-SCCs

1. Reverse edges

2. While unmarked vertices:

a. i=L.pop()
b. //ifiis marked, continue to next loop iter.
c. dfs(i) //and mark as SCC j, j++

3

5

7
—1—

Summary: 3 SCCs Recall the first phase

Partitioned the second
(black) dfs traversal into 2
SCCs

Question 2
(Dijkstra’s algorithm)

1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

2. Given a weighted, directed graph G = (V, F) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

3. Your classmate claims that Dijkstra’s algorithm relaxes the edges of every shortest path in the graph
in the order in which they appear on the path. Show that him/her is mistaken by constructing a directed
graph for which the Dijkstra’s algorithm could relax the edges of a shortest path out of order.

Hint: The shortest path between two vertices in the graph is not necessarily unique.

Dijkstra - Find shortest paths between (input starting vertex s) and all other
vertices.

- Single source shortest paths

Dijkstra

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V->Z

let prev:V -V o For a vertex s, finds shortest paths to all vertices. At
let Q@ be an empty priority queue
each step..

dist[s] « @
for each v€V do
if v #s then
dist[v] « o

- Consider current closest vertex u (priority queue)
- Greedily update path lengths to u’s neighbors

end if
pr‘e\éEij «-1 - “Relaxing the edge”
. ist[v], ..
endesr (dtstlvl, v - Mark as visited

while Q is not empty do
u « Q.getMin()
for each w € V adjacent to u still in Q do
d « dist[u] + weight(u, w) For your studies, a walkthrough of how Dijstra works..
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

1 @ 0.5 @

(A&

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)

A

frey —|

Q
(0,A)

(%,8)
(e, C)
(%, D)
(@ E)
(e0,F)
(. 6)

b C D
Jig © |Oo|e0|o@|®@|@| @]

—

—

~

E

=i

F G

y

__{

H

=

Update based on A's edges

@ 6.5 @ 1 @ 0.5 @

8 5 1

o

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)

Next on the prior. Qis F

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

> oo

Why didn’t we update D?

@ 6.5 @ 1 @ 0.5 @

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

@ 6.5 @ 1 @ 0.5 @

14 8) 10

O O O

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

8 2
© 0

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

8 2
© 0

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

A B ¢ P E F 6 N

dk 0 3.5 9 1352 €5 3
pev . H -1 A B A F F

@ 6.5 @ 1

14 8

Q

for each w € V adjacent to u still in Q do (9516)
d « dist[u] + weight(u, w) L 9, D)
if d < dist[w] then
dist[w] « d Cl?o.f, E)

previw] « u

Q.set(d, w) CQL L)

A B ¢ P E F 6 N

dk 0 3.5 9 1352 €5 3
pev . H -1 A B A F F

Q

for each w € V adjacent to u still in Q do (9516)
d « dist[u] + weight(u, w) L 9, D)
if d < dist[w] then
dist[w] « d Cl?o.f, E)

previw] « u

Q.set(d, w) CQL L)

10

®

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

A B¢ D E F 6 |
dk 0 3.5225 9)35 2 85 3
bev 1 H G A B A F F

Q

@A)

(135, E)
(2.5,)

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

A B¢ D E F 6 |
dk 0 3.5225 9)35 2 85 3
bev 1 H G A B A F F

Q

@A)

(135, E)
(2.5,)

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

A B¢ D E F 6 |
dsk © 3.522 9 1352 €5 3
Prev I M ‘D A B A F F

Q

(135, E)
(2 . ¢)

for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
prev(w] « u
Q.set(d, w)

A B¢ P E F 6 |
dst 0 3§22 9 1352 85 3
Prev I M ‘D A B A F F

Q

(135, E)
(2 ,¢)

/N 0.5
e pt) A Bc¢c DEF ¢ H

-

4 dgk © 3.522 9 13352 65 3
Prey | “,p A b A F F

W)

for each w € V adjacent to u still in Q do Q

d « dist[u] + weight(u, w)
if d < dist[w] then

dist «d
p:':sz]] “u sz = L)

Q.set(d, w)

A B c¢c D E F 6 |
5 4 dk 0 36§22 9 1352 65 3
Prov 1 H (0 A B A F F

(F———0——®

for each w € V adjacent to u still in Q do Q

d « dist[u] + weight(u, w)
if d < dist[w] then

dist «d
p:':vgz]] “u sz = L)

Q.set(d, w)

Question 2
(Dijkstra’s algorithm)

1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

Question 1

(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm

pl‘O(lllCOS an incorrect answer.

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time
1

pPQ
1. (a,0)
2. (b,inf)
3. (c,inf)
A B C
dist 0 inf inf

prev A -1 -1

Question 1

(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm

pl‘O(lllCOS an incorrect answer.

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time
1

pQ
1. (c,1)
2. (b,2)
A B C
dist 0 2 1

prev A -1 -1

Question 1

(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm

produces an incorrect answer.

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

negative edge may be at the end, Dijkstra won’t encounter it in time
1

A 5 c We take c off here, but
there is clearly a shorter
(negative) path!

dist 0 2 1

prev A -1 -1

Question 1
(Dijkstra’s algorithm)
1. Give a simple example of a directed graph with negative-weighted edges for which Dijkstra’s algorithm
produces an incorrect answer.

Intuition: once a vertex is removed from the pQ, its shortest path is fixed.

*egative edge may be at the end, Dijkstra won’t encounter it in time

pPQ

1. (b,2)

or each w €V adjacent to u
d « dist[u] + weight(u, w)
if d < dist[w] then

dist[w] « d
previw] « u

Q.set(d, w) B C

By the time we encounter
dist 0 2 1 b and find the path to ¢, ¢
no longer in the pQ!!!

prev A -1 -1

2. Given a weighted, directed graph G = (V, E) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

This seems plausible...

Can we update the previous example so

that it actually finds the shortest path a-> ¢

dist

prev

W=

Other examples that work

2. Given a weighted, directed graph G = (V. E) in which edges that leave the source vertex s may have
negative weights, but all other edge weights are non-negative, and there are no negative-weighted cycles.
Can the Dijkstra’s algorithm correctly find all the shortest paths from s in this graph?

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > Z
let prev:V -V

Another Way to see thlS let Q be an empty priority queue

dist[s] « ©
for each veV do
if v #s then
dist[v] ¢ o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do

u <« Q.getMi
Update Step Corre(?t for eacg: wleny adjacent to u still in Q do
regardless if negative edge d « dist[u] + weight(u, w)
if d < dist[w] then
_ dist[w] « d

previw] « u
Q.set(d, w)

We only have an error if we don’t end if
update (see prev example end for
P (P P) end while

return dist, prev
end algorithm

3. Your classmate claims that Dijkstra’s algorithm relaxes the edges of every shortest path in the graph
in the order in which they appear on the path. Show that him/her is mistaken by constructing a directed
graph for which the Dijkstra’s algorithm could relax the edges of a shortest path out of order.

Hint: The shortest path between two vertices in the graph is not necessarily unique.

Relaxing an edge: checking if the current best known distance is better than the
distance of the current edge

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > Z
let prev:V >V
let Q be an empty priority queue

dist[s] « ©
for each v €V do
if v #s then
dist[v] « oo
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
. . if d < dist[w] then
BaS|Ca”y, this Step — dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Hint: The shortest path between two vertices in the graph is not necessarily unique.

koo~

dist

prev

Question 2

(Bellman-Ford algorithm)

For the Bellman-Ford algorithm, explain
1. why it only requires |V'| — 1 passes?
2. why the last pass (|V| — 1) through the edges will determine if there are negative weight cycles or
not?

Bellpan-Fod (6, 5):
disy £ ==
preL] = !
Just Ls)=2
for 1 =[k.. o=}

\%’T‘ ench edge e =(L)EE
de& dstlvl+wce)
digkshu It < ass]:

latd distLy7= 4

J W/evajvd

‘V“ Le}ur

and

orp’

e e=(uer
F TF Oisk¢o)+ wled < JLuT"
[Neoulie Cycle

