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Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?
2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V, E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

Euler tour if and only if
in-degree(v) = out-degree(v), Vv € V.



Question 2
Consider the directed graph G = (V, E) given below:

A

where the set of vertices is V = {A, B,C, D, E} and the set of edges is:
E={(A,B),(A,C),(B,C),(B,D),(C,E),(D,E)}.

1. Construct the adjacency matrix A of G.

2. Compute the transitive closure of G using Warshall’s algorithm.
3. Draw the graph representation of the transitive closure of G.

4. Determine the reachability of each node in G.

5. ldentify if G is strongly connected. If not, can you add one edge to make G become a strongly
connected graph?



Question 3

Consider the following graph G:

Let G4 be a directed graph using the vertices of GG. For a pair of vertices u and v connected by an edge
in GG, their respective directed edge in G4 is as follows:
(u,v), deg(u) < deg(v)V (deg(u) = deg(v) Au < v)

Edge with vertices v and v = :
(v,u), Otherwise

1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make G4 strongly connected.

2. Show all the topological orderings of G 4.



Question 1
(Strongly connected components)
1. How can the number of strongly connected components of a graph change if a new edge is added?

2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has

Euler tour if and only if
in-degree(v) = out-degree(v), Vv € V.
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Question 1
(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.

Can itincrease?
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Question 1
(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.
Can itincrease? No

Can it decrease? yéj
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(Strongly connected components)
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Question 1

(Strongly connected components)

1. How can the number of strongly connected components of a graph change if a new edge is added?

Can either increase/decrease/stay the same.
Can itincrease? No
Can it decrease? Yes

Can it stay the same? Yes @



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that

traverses each edge of G exactly once, although it may visit a vertex more than once. Show that GG has
Euler tour if and only if

_——————— in-degree(v) = out-degree(v), vv € V.

V
Oh boy, lets start with an informal proof ‘S



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( — ) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( — ) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( — ) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v)

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).
e L

An Euler tour is a cycle i.e. each incoming edge is “paired” with an outgoing edge



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( — ) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v)

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).

There will be an edge left over! /@ 1o 6. 6(//5?/()”/0/,



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( — ) Suppose G has an Euler tour.

We want to show every vertex v has indeg(v) = outdeg(v).

Suppose not, that there is a vertex v with indeg(v) > outdeg(v).
There will be an edge left over!

Exercise: show the same holds when indeg(v) < outdeg(v)
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2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

Suppose | delete a vertex (x)



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tﬁﬁiﬁo’ 149

Then there are vertices /Léy such that:
indeg(y) = outdeé(y) +1= 1

indeg(u) = outdeg(u) -1 = O
M\,



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler path from/u,—> Y,
12 7



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

We want to show there is an Euler tour

If we instead find an Euler path from u — v,

We can just add back x to get an Euler tour



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

fu

We want to show there is an Euler teur- indeg(y) = outdeg(y) + 1

Then there are vertices u,y such that:

indeg(u) = outdeg(u) - 1

So let’s find an Euler path in this graph



2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that

traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Suppose | delete y



2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1
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Then there are vertices u,w such that
indeg(w) = outdeg(w) + 1
indeg(u) = outdeg(u) - 1



2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1
p N

indeg(u) = outdeg(u) - 1

This new graph (deleted y) shares the same structure as the previous graph.. We can induct
on the number of edges!



2. (Euler tour) An Euler tour of a strongly connected, directed graph G
Euler tour if and only if

(V. E) is a cycle that

traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.
We want to show there is an Euler tour

Then there are vertices u,y such that
indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
\
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indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

By Induction there is an Euler path from u — w



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Add back y



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:

indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Add back x



2. (Euler tour) An Euler tour of a strongly connected, directed graph G = (V. E) is a cycle that
traverses each edge of GG exactly once, although it may visit a vertex more than once. Show that G has
Euler tour if and only if

in-degree(v) = out-degree(v), Vv € V.

( < ) Suppose indeg(v) = outdeg(v) for all vertices v.

Then there are vertices u,y such that:

We want to show there is an Euler tour indeg(y) = outdeg(y) + 1

indeg(u) = outdeg(u) - 1

Then there are vertices u,w such that:
indeg(w) = outdeg(w) + 1

indeg(u) = outdeg(u) - 1

Complete the tour!



Question 2

Consider the directed graph G = (V, E) given below:

P SRS
T
D

1. Construct the adjacency matrix A of G.

uv A | B | C D  E
A 0 ) | o | O
B o o ] 1|C
cC o/ 2 0 O 1
b o o O 0 |
E O O Q0 © 0




Question 2

Jonsider the directed graph G = (V, E) given below:

D

2. Compute the transitive closure of G using Warshall’s algorithm.

What's your algorithm Warshall/Floyd/Ingerman/Roy/Kleene?

i 3 Worst-case space .
History and naming [edi) siemie pace ©(|V[%)

The Floyd-Warshall algorithm is an example of dynamic programming, and was

published in its currently recognized form by Robert Floyd in 1962.(3] However, it is essentially the same as algorithms previously
published by Bernard Roy in 1959[4] and also by Stephen Warshall in 196205 for finding the transitive closure of a graph,® and is
closely related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression, with
the difference being the use of a min-plus semiring.[”l The modern formulation of the algorithm as three nested for-loops was first

described by Peter Ingerman, also in 1962.[€]



algorithm Floyd-Warshall(M:adjacency matrix representing G(V,E))

doy! ufe 7oeca [l midie Jc

R(_l) «— M
n < |V|
[=> I = )
for kK from @ to n—1 do ) _
for i from @ to n—1 do S 2
~ for j from 6 to n—1 do 5 Jlew o pafh | >Jﬁ /i
R®ij] < RED[i,] or (RE-D[ik] and RED[k,j]) ;Zf?
end for ' _
de:d for QK(:\‘»J] =1 & wetond o ,ﬂc,/zm
end for

Jotreen Tas )y on proy. Her CQUZ;)
return RV Oﬁ /‘J)

end algorithm _
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o “[/
D

RED « M
n <« |V|

for k from © to n—1 do
for{;7from ®@ ton—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RCD « M
e mE
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for -
end for
end for

return R D
end algorithm

R C E
)

A 1 0
B 1 0
C 0 1
D 0 1
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RED « M
n <« |V|

for k from @ to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R*V[ik] and R&VIL,j])
end for "?jif:? T
end for }2 601)007 ) 5%

end for

return R D
end algorithm

R C E
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A 1 0
B 1 0
C 0 1
D 0 1
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RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RED « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RED « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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REYV « M
n <« |V|

for kK from @ to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do

R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
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end for
end for
end for

return R D
end algorithm

What's the final R9? | ro
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j=A 0
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R C E
)
A 1 0
B 1 0
C 0 1
D 0 1

1

RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

Whats the finalR©? ro A ' B ¢ | D | E
Same as R, why?

A 0o 1 1 00
k=A B 0o 0 1 1 0
C o0 o0 0 o0 1
=B D 0 0 0 0| 1
J=A
E 0 0 0 0 O0




RED « M
n <« |V|

for k from @ to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do

R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])

end for
end for
end for

return R D
end algorithm

RO A | B  C E

A0 11
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RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RCD « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for e
end for
end for

return R D
end algorithm
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RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm
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RO B C D E

RCD « M
n <« |V|

for k from @ to n—1 do
for i from © to n—1 do
for j from @ to n—1 do
R®[i,j] « R*D[i,j] or (
end for — =
74
end for 9,
end for

return R D
end algorithm

R(k-l)[i, k] and R("‘l)[ki i1

R | A B C D E
A 0 1 1 1
=5

k=B B 1 1

C 1
i =A 5 1
j=D

E
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RED « M
n <« |V|

for k from @ to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do

R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])

end for
end for
end for

return R D
end algorithm
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RED « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

R A B C D E

Al o 1 1 10
k=B B 1 1
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RED « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

What's the final R("1?
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RO C E
A 1 0
B 1 0
C 0 1
D 0 1
E 0 0

RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j]1 « R®V[;,j] or (R®V[i,k] and REDIL,j])
end for
end for
end for

return R D
end algorithm

What's the final R("1?

Al o 1 1 10
k=B B 0o 0 1 1 0
C o0 o0 0 o0 1
=5 D 0 0 0 0| 1
J=A
E 0 0 0 0 O0




RED « M
n <« |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j]1 « R®V[;,j] or (R®V[i,k] and REDIL,j])
end for
end for
end for

return R(ZL
end algorithm

What's the final R©@?
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end

What's the final R©@?

k=C

RED « M
n <« |V|

for k from @ to n—1 do
for i from © to n—1 do
for j from @ to n—1 do

R®[i,j] « R®V[;,j] or (R®*V[i,k] and R&VIL,j])

end for
end for
end for

return R

R C E
A 1 0
B 1 0
C 0 1
D 0 1
E 0 0

algorithm
R@ | A B E
A |0 1 1
B O 0 _1’
cC |0 0 1
D O 0 1
E O 0 0




RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and RED[k,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=D




RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and RED[k,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=D

D
R C E
A 1 1
B 1 1
C 0 1
D 0 1
E 0 0




RED « M
n < |V|

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and RED[k,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=E

D
R®) C E
A 1 1
B 1 1
C 0 1
D 0 1
E 0 0




Summary
Foreach k =A,B,C,D,E:
Foreachi= ..7
Foreachj=....
Check if there is a path between
i and j through k
—_——
RED: Adj Matrix
RA). Rt + (paths through A)
R/ Iﬂsh (paths through B)
R@C): R(B) + (paths through C)
RGD): REC)+ (paths through D)
R@#E): RED)+ (paths through E)

=




T o NN

A - B > C

|/3

D

Question 2

Consider the directed graph G = (V, 1') given below:

\17

3. l)awtl graph representation of the transitiv

[Z \Z\fj DVEE e 15 e papy ISV

R A B C D E
A 0 1 1 1 1
B 0 0 1 1 1
C 0 0 0 0 1
D 0 0 0 0 1
E 0 0 0 0 0

Tﬁwﬂﬁj}/u@ Claswe 6(7> X
(dd edye L1,0) Jo 6
f e s « peth [



Question 2

/"'_\ Consider the directed graph G = (V, E) given below:
AT—B——C——E —
| / A | / )
D
D

4. Determine the reachability of each node in G.
/_\

o o ol o o The transitive closure can help here

Check 1F elge exids

¥ 2 Cﬂ&)%/& (X%



5. Identify if G is strongly connected. If not, can you add one edge to make G become a strongly

nnected graph l
no 5 ng P&)Lh %6}1/66/\ Ei /4
\/\7 I l/

- A s w Sarce ( Jﬂd@[fé) o

b | 7L %w %y
Oﬂw )
VZe /[@5

R [ ookl )=

coved S0F = sgurce omule 6 ¢ Wﬂw G, ii?; ]ngogﬂzbo@ ?%Wf@@




Question 3

Consider the following graph G:

Let G4 be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge
in GTTheir respective directed edge in Gq is as follows:

(u,v), deg(u) < deg(v)V (deg(u) = deg(v) Au < v)
G

Edge with vertices v and v =
(v, u), erwise

Let's draw G
First, calculate deg(v)




Consider the following graph G:

Question 3

w | [ fo g

Let (G4 be a directed graph using the vertices of GG. For a pair of vertices v and v connected by an edge
in (G, their respective directed edge in G4 is as follows:
(u,v), deg(u) < deg(v)V (deg(u) = deg(v) Au < v)

Edge with vertices v and v = ) i
(v,u), Otherwise

Let's draw G g



Consider the following graph G:

Question 3

Let G4 be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge
in (G, their respective directed edge in G4 is as follows:

(1,0), deg(u) < deg(v) V (deg(u) = deg(v) A u < v)

Edge with vertices u and v =
’ {("’ u), Otherwise —

Let's draw G Joy LU =




deg(v)

1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make G4 strongly connected.




1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges

: Y [pelonSs
required to make ;)d L;rongly connected. F\Qo\f by | V/(S ik V92 iyt

If we run Warshall.. e il I L G A

0 101 1 111

1 1 10111

2 1 1|1

3 1 1|1

4 g |D | Do |2 | OC o

5 1 1

6 1 1

70 Oz o1 O] 0V

Observations: 450 Thre s o path & —> ©



1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make (G4 strongly connected.

If we run Warshall.. i I I N S T A B
1 1 1 1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1
1 1
1

Adding (4,0) makes strongly connected



2. Show all the topological orderings of G 4.

“Pulling” the graph to make source/sink a little more clear




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 1st level a little more clear

Note: Exclude prev. “pulled” nodes




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 2nd level a little more clear




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 3rd/4th level a little more clear




2. Show all the topological orderings of G 4.

I can wrlte out the topo orderlngs slightly easier now
‘ . Any node on the same level can go in either order




| can write out the topo orderings slightly easier now
; ‘ Any node on the same level can go in either order

Idea: chain by chain
O 4~ 5222627 29
\) 5252256 5 7Y
52NN 9296 5,



