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Abstract
Large-scale distributed storage systems rely on erasure codes to ensure fault tol-

erance against node failures. Due to the observed changing failure rates within these
systems, code redundancy tuning, or code conversion has been shown to reduce
storage cost. Previous work has developed theoretical bounds and constructions for
convertible codes, a specialized class of erasure codes optimizing either access or
bandwidth costs during conversion.

In this thesis, we address the challenge of securing convertible codes in the pres-
ence of an eavesdropper. We introduce an eavesdropper-secrecy model for convert-
ible codes wherein an eavesdropper gaining read access to a subset of the codeword
symbols learns nothing (information-theoretically) about the underlying message.
We then focus on access-cost optimal convertible codes, and we then derive the
information-theoretic upper bound on the number of message symbols that can be
stored securely. We provide an explicit construction that simultaneously reaches this
secrecy bound while admitting access-cost optimal conversion using concatenation
of nested codes with traditional convertible codes. Since our construction works with
all traditional access-optimal convertible codes, we show that access-optimal secure
convertible codes exist for all message and codeword length parameters. Lastly, we
discuss a relaxed secrecy model where the number of eavesdropped symbols on each
initial and final codeword is known.
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Chapter 1

Introduction

Erasure codes provide a low-storage overhead solution to ensure fault tolerance against node
failures in large-scale distributed storage systems [5, 7]. In this approach, the data is divided into
k message symbols, which are then encoded using an [n, k] erasure code into n coded symbols,
forming a codeword using an [n, k] erasure code. These codewords are distributed across n dif-
ferent nodes in the storage system. To achieve optimal storage efficiency and fault tolerance,
Maximum Distance Separable (MDS) codes are typically employed. Informally, the MDS prop-
erty ensures data integrity by allowing recovery of the original data even if up to (n − k) nodes
fail. In other words, any k out of the n codeword symbols are sufficient to decode the original
data.

The parameters n and k are selected based on the observed node failure rates, which, as
shown by Kadekodi et al., can vary over time [8]. During periods of high failure rates, n and
k are configured to achieve a high redundancy ratio n

k
, ensuring greater fault tolerance at the

expense of increased storage overhead. Conversely, during periods of low failure rates, a lower
redundancy ratio is preferred, reducing storage overhead. However, changing the parameters n
and k on already encoded data using the conventional approach - decoing the data from the initial
code and re-encoding it with a new code - incurs significant costs in terms of I/O and network
bandwidth [9].

This problem has been formalized under the theoretical framework of code conversion [9],
which defines the conversion of data from an initial code CI with parameters [nI , kI ] to a final
code CF with parameters [nF , kF ]. Convertible codes [9] are a class of codes that by design
minimize the costs of code conversion, while maintaining certain decodability guarantees (such
as the MDS property) in both the initial and final codes. Convertible codes have been studied
primarily in terms of minimizing conversion costs, with two key cost metrics: access cost [9,
12], which measures the number of symbols accessed during conversion, and bandwidth cost
[10, 11], which measures the amount of information downloaded. Access-optimal convertible
codes are known for all parameter settings, while bandwidth-optimal convertible codes have
been developed for certain parameter regimes.

In this thesis, we consider the problem of information-theoretic security of convertible codes.
Specifically, we investigate security against passive eavesdroppers who gain read access to some
of codeword symbols stored in the system and try to learn information about the message sym-
bols. This problem setting has been inspired by several prior works on information-theoretic
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security in distributed storage codes under various models, such as secure regenerating codes [2,
4, 15, 17]. We first introduce a secrecy model for convertible codes, incorporating requirements
for data decoding, code conversion, and eavesdropper secrecy. For a specified security parameter
ℓ, the objective is to ensure that an eavesdropper who reads any ℓ code symbols of a convertible
code learns no information about the message symbols.

We then focus on access-optimal convertible codes and establish an upper bound on the num-
ber of message symbols that can be securely stored using convertible codes using an information-
theoretic approach. We then present an explicit construction of an access-optimal secure convert-
ible code that achieves this upper bound for all parameter settings. The proposed construction
uses code concatenation of nested codes [19] with traditional convertible codes [9, 12]. Lastly,
we consider a relaxation of the secrecy model, where we assume additional knowledge about
the symbols accessed by eavesdroppers on each codeword. We call this modified model the fine-
grained secrecy model. We derive the secrecy capacity under this model and discuss the plausible
scenarios that can be modeled and accounted for using the fine-grained model.

The outline of the thesis is as follows. We review the relevant background and notation con-
textualizing secure convertible codes in Chapter 2. In Chapter 3, we presents the secrecy model
for convertible codes. In Chapter 4, we prove the secrecy capacity of any secure convertible
code and presents a construction of access-optimal secure convertible codes that reach secrecy
capacity for all parameters. We present the fine-grained secrecy model for convertible codes in
Chapter 5, deriving the upper bound on secrecy capacity and discussing the scenarios that can be
captured using the fine-grained secrecy model. Lastly, we conclude the thesis with a discussion
and future work description in Chapter 6.

2



Chapter 2

Background and Relevant Work

In this chapter, we review relevant background and prior work. We will first define notation that
we will use throughout the thesis.

2.1 Notation

Caligraphic, uppercase letters T denote sets. Bold lowercase letters will denote vectors, e.g. a n-
length vector, x ∈ Fn , whereF is a finite field. When relevant, we denoteFq as the finite field of
size q. The i’th symbol of a vector x is written (non-bold) as xi. A vector subscripted with a set,
e.g. xS , denote the projection of the vector to each coordinate in the set x e.g. xS = [xi : i ∈ S].
Uppercase letters denote matrices, e.g. a matrix of size k × n, G ∈ F

k×n, while Calligraphic
letters C will denote codes. For any vector x, its corresponding random variable is denoted as X
(uppercase, calligraphic, and bold). Let [i] = {1, 2, . . . , i}. Let Π (i) be the set of all partitions
of [i]. Lastly, let H be the entropy function (in base |F|).

2.2 Erasure Codes

An (n, k) erasure code C is a mapping from messages m ∈ Fk to codewords c ∈ Fn. We say
C is linear if it is a linear mapping and can be represented with generator matrix G ∈ Fk×n (we
denote this by using square brackets e.g C is a [n, k] code). We also say a [n, k] erasure code C is
systematic if G =

[
Ik | P

]
, where Ik is the identity matrix of size k and we say P is the parity

matrix.
Further, a [n, k] code C is Maximum Distance Separable (MDS) if any subset of k columns

are linearly independent (and thus form a non-singular matrix). In other words, any k symbols
of a codeword is sufficient to reconstructing the entire codeword and its underlying message for
systematic codes. In the next sections we will often refer to erasure codes simply as codes.
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Figure 2.1: A systematic access-optimal [5, 4; 7, 6] convertible code, where only the non-
systematic symbols are changed. The bold-edge symbols were accessed by the conversion pro-
cedure. The arrows represent which accessed symbol was used in the computation of each new
non-systematic symbol in the final codewords.

2.3 Convertible Codes

The traditional convertible codes framework captures the conversion between an initial and a final
configuration of stored data [9]. In the initial configuration, data is encoded using an (nI , kI) code
CI , while in the final configuration, the same data is encoded using an (nF , kF ) code CF . Non-
trivial conversion occurs when kI ̸= kF , allowing multiple codewords in both configurations. Let
m ∈ Fk be the message symbols to be stored, where k = lcm(kI , kF ). The initial configuration
contains λI = k/kI codewords, and the final configuration contains λF = k/kF codewords. The
message symbols in each codeword is determined by the initial and final partitions PI and PF of
[k]. A conversion procedure is then defined to transform the initial configuration into the final
one. The access cost of conversion is measured by the number of codeword symbols used by the
conversion procedure.

More formally,

Definition 1 (Convertible Code [9]). A [nI , kI ; nF , kF ] convertible code is defined by:

1. A pair of codes (CI , CF ) where CI is a (nI , kI) code over F and CF is a (nF , kF ) code.
2. A pair of partitions PI , PF ∈ Π (k), such that each subset P I

i ∈ PI has size kI , and each
subset P F

j ∈ PF has size kF .

3. A conversion procedure that takes initial codewords {CI(mPI
i
) : PI

i ∈ PI} to final code-
words {CF (mPF

j
) : PF

j ∈ PF }.

We say that a convertible code is MDS if the initial and final code are both MDS. Similarly, a
convertible code is linear if the initial and final code are both linear. Convertible codes were first
studied in the context of their access cost. Access cost is the measure of the total number of nodes
accessed in the process of conversion. Optimal bounds and constructions for the access cost of
convertible codes is known for all parameters nI , kI , nF , kF ∈ N such that nI > kI , nF > kF

[9, 12].
In the interest of ’securing’ of the message, these codes are insufficient since they reveal

information about the message. We will devise codes that transform existing MDS convertible
codes into ones that obfuscate the message.
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Example: Access Optimal [4, 2; 6, 4] Convertible Code Let θ ∈ F be a primitive element. A
MDS, systematic, access-optimal [4, 2; 6, 4] convertible code (CI , CF ) has the following corre-
sponding generator matrices GI and GF :

GI =
[
1 0 1 1
0 1 1 θ

]
, GF =


1 0 0 0 1 1
0 1 0 0 1 θ
0 0 1 0 1 θ2

0 0 0 1 1 θ3


Here, λI = 2 and λF = 1 i.e., there are 2 initial codewords and 1 final codewords. Let the
message vectors underlying each initial codeword mI

1, mI
2 ∈ F2 be defined as

mI
1 =

[
m1 m2

]
,

mI
2 =

[
m3 m4

]
.

Define the message vector underlying the final codeword mF
1 ∈ F4 as

mF
1 =

[
m1 m2 m3 m4

]
.

Then, the initial codewords are

CI(mI
1) =

[
m1 m2 p1,2 p′

1,2

]
CI(mI

2) =
[
m3 m4 p3,4 p′

3,4

]
,

where pi,j = mi + mj and p′
i,j = mi + mjθ, for i, j ∈ [4]. In the access-optimal conversion

procedure, only the 4 symbols of the initial codewords p1,2, p′
1,2, p3,4, and p′

3,4 are accessed to
compute the final codeword

CF (mF
1 ) =

[
m1 m2 m3 m4 p1,2 + p3,4 p′

1,2 + p′
3,4θ

2
]

.

Although not the focus of this thesis, we note that convertible codes have also been studied in
the context of their bandwidth cost. The bandwidth cost of conversion is measured by the amount
of data downloaded (download bandwidth) within a network of nodes performing conversion. In
this setting, codeword symbols are stored at a finer granularity, where during conversion, only a
fraction of the codeword symbol may be downloaded. Formally, the initial and final codes of the
convertible codes are vector codes, which are codes over finite extension of finite fields Fqα for
some α ∈ N. Within the merge regime (kF = λIkI , λI ≥ 2), there are optimal constructions
employing piggyback codes [11, 16]. In the split regime (kI = λF kF , λI ≥ 2), constructions
employ a similar piggyback code technique, where these codes are optimal assuming a plausible
conjecture on the bandwidth lower bound of convertible codes [10].

2.4 Wiretap Channels
The wiretap channel was first introduced by Wyner in [20], where a transmitter Alice sends
messages to receiver Bob across a discrete, memory-less channel (DMC) in the presence of an
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eavesdropper Eve, who observes a partial view output via another DMC. Wyner derives a tradeoff
between the maximum rate of information that Alice can convey and the allowed amount of
eavesdropping such that Alice’s communication remains perfectly secret to Eve.

An extension of the wire-tap channel, known as the wire-tap channel II, was studied by
Ozarow and Wyner in [14], where there is additional restrictions fixes Alice’s message and en-
coding lengths. That is, Alice must convey a k symbol message to Bob over the channel with
an n symbol transmission, where Eve can observe ℓ < n symbols. Ozarow and Wyner derive a
similar upper bound on the information conveyed as in the previous wire-tap channel setting, but
they also show an explicit construction matching the maximum information rate while remaining
perfectly secret to any eavesdropper. Their construction is based on transmitting the cosets of a
chosen group code, which will appear uniformly random to an eavesdropper who can only see
a partial number of symbols. Since we adapt this technique for our setting of convertible codes,
we delve into the technicalities in the following subsection 2.4.1.

Further, Subramanian and McLaughlin in [19] study the Erasure-Erasure wire-tap channel,
a further extension of the wire-tap channel II with additional erasures µ in receiver Bob’s view
of Alice’s sent transmission. Note that an Erasure-Erasure channel is a wire-tap II channel when
µ = 0. They construct a nested code, which is based on the coset encoding of Ozarow and
Wyner, with an additional concatenation of an erasure code. Likewise, nested coding will be
useful in constructing secure convertible codes, so we provide their background theory in the
following subsection 2.4.1.

2.4.1 Coset Binning and Nested Codes
Coset and nested coding used in the wiretap II channel[14] and the Erasure-Erasure channel[19]
setting will be integral to our construction of secure convertible codes. We compile their relevant
techniques in detail.

First, we look at coset codes in the wiretap II setting. Suppose Alice has a k symbol message
m ∈ Fk she wants to transmit to Bob via an n symbol coded message x ∈ Fn through a perfect
channel, where Eve may observe any ℓ < k symbols of her coded message. Alice’s objective
is to choose a n symbol encoding scheme that achieves perfect secrecy; that is, Eve does not
gain any information Alice’s underlying message. We can state the requirements of the wiretap
II setting in information theoretic terms.

Definition 2 (Wiretap II Secure [14]). A code C ⊆ F
n is (k, n, ℓ)-Wiretap II Secure if for any

uniformly random chosen m ∈ Fk and x = C(m),

H(S | XE) = H(S), (∀E ⊂ [n], |E| ≤ ℓ)
H(S | X ) = 0.

The first equation ensures that any ℓ symbols do not reveal anything about a message m
chosen uniformly at random, and the second ensures that the entire message is recoverable when
reading the entire coded message x. This is possible by employing the use of cosets as encodings
of messages. Informally, a partial view of a coset vector admits candidate matches across differ-
ent cosets, where each candidate coset contains an equal number of candidate vectors. Further,
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the number of candidate cosets will be equal to 2k, the number of possible messages. Hence,
an eavesdropper will have no information, while the receiver will be able to decode the entire
message. Formally,

Lemma 3 (Coset Codes [14, 19]). For k, n, ℓ positive integers such that k < n and ℓ < n, there
exists a code C∗ that is (k, n, ℓ)-Wiretap II secure.

Proof. Choose C∗ to be an MDS [n, n − k] code. Since |C∗| = qn−k, there are qk cosets of C∗
and so there is a one-to-one mapping from cosets to messages. Suppose message m maps to
coset a + C∗, for some a ∈ Fn. Then, x is chosen to be a uniformly at random chosen element
of a + C∗. By the bijection from cosets to messages, x completely determines m implying
H(S|X ) = 0.

What is left to show is that for any E ⊂ [n] with|E| ≤ ℓ, this encoding implies H(S|XE) =
H(S). Let a ∈ Fn be a vector which matches x at the indices that Eve sees. More formally, for
all i ∈ E, ai = xi.

1 Then, we can define the set of all matching vectors lying within the coset of
a as a + C[n]\E, where

C[n]\E = {c ∈ C∗ : cE = 0}.

Thus, number of matches in each coset is
∣∣∣C[n]\E

∣∣∣, where there are qn−|E|

|C[n]\E| such cosets. Thus,

H(S|XE) = logq

 qn−|E|∣∣∣C[n]\E

∣∣∣
 = (n − |E|) − dim C[n]\E

= n − |E| − (n − k − |E|) = H(S).

We move onto the Erasure-Erasure channel, where recall that this channel adds erasures
within Bob’s view of the encoded message x. This addition is interesting due to push-and-pull
between Bob’s and Eve’s goals. Now that Bob can only see a subset of the encoded message
symbols, enforcing his ability to decode the original message m while enforcing information
theoretic security in Eve’s view lowers the amount of information Alice can securely convey to
Bob.

We define (information theoretically) secure codes in the Erasure-Erasure channel with the
addition of erasures in Bob’s view.

Definition 4 ((MDS) Erasure-Erasure Secure [19]). A code C ⊆ F
n is (k, n, ℓ, ν)- Erasure-

Erasure secure if for any uniformly random chosen s ∈ FkS for some kS ≤ k, there exists x ∈ C
such that

H(S | XE) = H(S), (∀E ⊂ [n], |E| ≤ ℓ)
H(S | XB) = 0 (∀B ⊂ [n], |B| ≥ ν)

If ν = k, we say C is an MDS (k, n, ℓ)-Erasure-Erasure secure code.

1For example, x = [0, 1, 2, 3, 4] and E = {1, 3}. Then, a = [b0, 1, b2, 3, b4] matches x for any b0, b2, b4 ∈ F5.
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The modification of the second equation enforces that in the case of any n − ν erasures, the
original message is still decodable. As mentioned prior, the goal of recovering the message with
only ν symbols and ensuring uniform randomness with any ℓ symbol will lower the number of
message symbols that are secure in such a system. In other words, our messages of length k will
have reduced entropy. Using information theoretic arguments, we can get an upperbound on the
secrecy capacity.

Theorem 5 (Upperbound on Secrecy Capacity for Erasure-Erasure Channels [19]). For k, n, ℓ, ν
positive integers such that ℓ < ν < k < n, and code C : Fk → F

n, if C is a (k, n, ℓ, ν)-
Erasure-Erasure secure code, then for any uniformly random s ∈ F

ks sent over the channel,
H(S) ≤ ν − ℓ. If C is a MDS (k, n, ℓ, ν)-Erasure-Erasure secure code, H(S) ≤ k − ℓ.

Proof. Suppose E ⊂ B ⊂ [n] such that |E| = ℓ and |B| = ν. Then,

H(S) = H(S|XE) − H(S|XB)
= H(S|XE) − H(SxE, xB\E)
= I(S;XB\E|XE)
≤ H(XB\E|XE)
≤ H(XB\E)
≤ ν − ℓ

The intuition of the above bound is as follows: if Bob chooses some set of ν symbols to
recover the message S, the worst case is when Eve chooses all her ℓ symbols from Bob’s recovery
set. In this case, the information conveyed by the ν symbols must be reduced by at least ℓ.

By the previous theorem, if C is an MDS (k, n, ℓ, ν)-Erasure-Erasure secure code, then Bob
can store at most ks ∈ N symbols securely, for ks ≤ k − ℓ. There are Erasure-Erasure Secure
codes that reach the upper bound on the secrecy capacity derived in theorem 5. While coset codes
are not Erasure-Erasure secure because cosets do not have any erasure correction guarantees
in general (intuitively, we could not even recover from one erasure of a coset code since the
encoding looks uniformly random until all n symbols are read), they are an important building
block for a suitable construction known as the nested code.

Definition 6 (Nested Code [19]). An MDS [n, k] code C is a ℓ-nested code if it has a generator

matrix G =
[
Gs

Gκ

]
∈ Fk×n, where Gκ ∈ Fℓ×n is a generator matrix of a MDS code.

First, a new message vector of length k is constructed comprising of the message symbols
to be encoded, s ∈ F

k−ℓ, and some masking symbols, κ ∈ F
ℓ, where each masking symbol

is chosen uniformly at random over F. Let m =
[
s κ

]
be this message vector. Then, its

encoding is mG = sGs + κGκ. One can verify that no information about the secure message
symbols s is leaked from any j < ℓ codeword symbols due to the addition of the encoding of the
masked symbols κGκ.

For intuition, one can view nested codes as a careful modification of coset codes that enforces
the MDS property. Again, let Cκ be a [n, n−k] code. Each coset codeword a+x, where a ∈ Fn
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and x ∈ Cκ, is a vector within the coset corresponding to a. Bob can then decode the coset
codeword into the vector a since its coset is unique, and Bob can see all the coset codeword
symbols. In the Erasure-Erasure setting, Bob only has a partial view, which we can treat as
erasures in the coset codeword. Thus, to ensure Bob can decode the message, we form our cosets
over codewords of an erasure code CS i.e., a = CS(s). Changing the message vector from an
arbitrary vector a ∈ Fn to a codeword a ∈ CS lowers the size of the message space Alice may
convey to Bob securely, and the secrecy capacity upper bound in Theorem 5 states at least how
much information is lost. We formally prove this intuition and show that nested codes match the
secrecy capacity upper bound below using a similar argument in Lemma 3.

Lemma 7 (Nested Codes [19]). For any k, n, ℓ positive integers such that ℓ < k < n, there exists
an MDS (k, n, ℓ)-Erasure-Erasure secure code reaching secrecy capacity.

Proof. Let D = CS + C∗ be an MDS [n, k] code, where CS is a [n, k − ℓ] code and C∗ be a MDS
[n, ℓ] code (i.e. D is a ℓ-nested [n, k] code). Further, suppose CS ∩ C∗ = {0}. Let GS, G∗, and G

be the generator matrices of CS , C∗, and D respectively. Let the message be m =
[
s κ

]
∈ Fk,

where s ∈ Fk−ℓ and κ ∈ Fℓ. Encode the message under D,

D
([

s κ
])

=
[
s κ

]
G = sGS + κG∗.

and let x = D
([

s κ
])

. Since x is an element of some coset of C∗, we can use the same analysis
in lemma 3 to show that for any J ⊂ [n] of revealed indices, we have

H(S | XJ) = dim D[n]\J − dim C∗[n]\J
2,

where for any B ⊂ [n] of size |B| = k,

H(S | XB) = dim D[n]\B − dim C∗[n]\B = (k − k) − 0 = 0.

Note that we use the fact that for any MDS [n, k] code C, dim C[n]\B = max{0, k − |J |}. Lastly,
for any E ⊂ [n] of size |E| = ℓ,

dim D[n]\E − dim C∗[n]\E = (k − ℓ) − (ℓ − ℓ) = k − ℓ = H(S).

Nested codes can be constructed from Reed Solomon (RS) codes. That is, for a [n, k] ℓ-
nested code, we can take overall code D to be a [n, k] RS code, where Cκ is the [n, ℓ] RS code.
The following illustrates an example construction for the special case of an ℓ-nested code when
n = k, which we will use for our secure convertible code construction:

Example: A [4, 4] 2-Nested Code Consider a nested coding for n = k = 4, ℓ = 2. Suppose D
is the MDS 2-nested code over F5 with generator matrix G defined as

G =


1 0 0 0
0 1 0 0
1 1 1 0
1 2 0 1

 .

2There are a total of
∣∣D[n]\J

∣∣ matched cosets for xJ. Each matched coset will have
∣∣C∗[n]\J

∣∣ elements, where

the number of cosets to consider are |D[n]\J |
|C∗[n]\J | .
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The secrecy capacity is 4−2 = 2. The secure message symbols are s1, s2 ∈ F4 and the (uniformly
random) masking symbols are κ1, κ2 ∈ F5. Let the message be m =

[
s1 s2 κ1 κ2

]
.

Then D(m) =
[
s1 + κ1,1 s2 + κ1,2 κ1 κ2

]
, where κi,j = iκ1 + jκ2. Any eavesdropper

reading any 2 symbols learns nothing about the secure message symbols s1 and s2.
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Chapter 3

Modeling Eavesdropper-Secure
Convertible Codes

In this chapter, we define secure convertible codes by enhancing the existing convertible code
framework with protection against eavesdroppers. A message m ∈ Fk is stored on the convert-
ible code, resulting in an initial/final configuration comprising of initial/final codewords. Now,
suppose that an eavesdropper gains read-access to any ℓ < min{kI , kF } codeword symbols,
spanning across initial and final configuration, as illustrated in Figure 3.1.

Note that the eavesdropper may choose to read some out of the ℓ compromised symbols
from the initial configuration and/or wait for the conversion to occur to choose the remaining
compromised symbols from the final configuration. Also, note that this secrecy model captures
the special case when the codeword symbols downloaded during the conversion process are
compromised, in the access-cost setting. This scenario is identical to the case of eavesdropper
reading the corresponding codeword symbols in the initial configuration.

We introduce additional notation to formally define the desired properties of secure convert-
ible codes under passive eavesdroppers. Let s ∈ F

kS be the message symbols to be securely
stored for some kS ∈ N. Let S be the corresponding random variable, which is assumed to be
uniformly distributed over FkS representing (incompressible) data. Hence H(S) = kS .

Next, we introduce notation to specify the partition of the secure message symbols into the

E

E E

Initial configuration.
Final configuration.

Figure 3.1: A [5, 4; 7, 6] convertible code with 3 symbols read by the eavesdropper (pink circles).
Initial codewords are on the top of the diagram while the final codewords are on the bottom of
the diagram. The initial/final codewords make up the initial/final configuration. Note that an
eavesdropper can choose to read symbols across different initial and final codewords, or they can
read all the symbols from a single codeword.
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initial and final codewords. Let SI ,SF ∈ Π (kS), where |SI | = λI and |SF | = λF denote secure
symbol partitions that specify the mapping of secure message symbols into the initial and final
codewords. Likewise, for i ∈ [λI ] let SI

i be the random variable corresponding to the secure
message symbols of i’th initial codeword, and for j ∈ [λF ], let SF

j be the random variables
corresponding to the secure message symbols of the j’th final codeword.

In traditional convertible codes, initial and final configurations are implicitly defined as the
collection of their corresponding codewords. However, to analyze an eavesdropper who may read
symbols across multiple codewords during the conversion (see figure 3.1), it is more convenient
to define these configurations as vectors. Let xI ∈ FλI nI represent the vector consisting of all
the codewords in the initial configuration (in the implicit ordering specified by the Convertible
code), and xF ∈ FλF nF represent the same for the final configuration. Then, for each i ∈ [λI ],
the vector xI

i ∈ FnI is the i’th initial codeword and for each j ∈ [λF ] the vector xF
j ∈ FnF is the

j’th final codeword.

Definition 8. A (ℓ, kS)−Secure [nI , kI ; nF , kF ] convertible code is a [nI , kI ; nF , kF ] convertible
code that can store a message s ∈ FkS satisfying following decoding and secrecy properties:

1. Decoding (MDS property). For each i ∈ [λI ] and any subset B ⊂ [nI ] of size kI ,

H(SI
i |X I

i,B) = 0,

and for each j ∈ [λF ] and any subset B ⊂ [nF ] of size kF ,

H(SF
j |X F

j,B) = 0.

2. ℓ-Secrecy. For any EI ⊂ [λInI ], EF ⊂ [λF nF ] of combined size
∣∣∣EI

∣∣∣ +
∣∣∣EF

∣∣∣ ≤ ℓ,

H(S | X I
EI ,X F

EF ) = H(S).

As in traditional convertible codes, the access cost is measured by the number of initial
symbols accessed in the conversion procedure. We are interested in secure convertible codes that
maximize kS and minimize access cost simultaneously. In the following section, we prove the
information-theoretic upper bound on the number of secure message symbols that be stored using
a convertible code. For (ℓ, kS)-secure convertible codes that reach the upper bound on secrecy
capacity, we drop the kS from the notation, simply denoting them as optimal ℓ-secure convertible
codes.
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Chapter 4

Secrecy Upper Bound and Optimal
Construction for Secure Convertible Codes

4.1 Upper Bound on the Secrecy Capacity of Convertible Codes

In order to derive an upper bound on the secrecy capacity, we first address a necessary nuance of
ℓ-secure convertible codes. In this model, an eavesdropper is given the highest level of flexibility,
where she can choose any symbol within the initial or final configuration to access. In particular,
she may choose to read only the symbols of an individual codeword. Thus, in order for ℓ-secrecy
to hold for the overall convertible code, each codeword must be secure to ℓ eavesdroppers. This
intuition is captured in the following lemma.

Lemma 9. For any (ℓ, kS)-secure [nI , kI ; nF , kF ] convertible code with secure message symbols
s ∈ FkS , the following hold:

1. Initial codeword Secrecy: For any i ∈ [λI ] and subset EI
i ⊂ [nI ] of size ℓ, we have

H(SI
i |X I

i,EI
i
) = H(SI

i ).

2. Final codeword Secrecy: For any j ∈ [λF ] and subset EF
j ⊂ [nF ] of size ℓ,

H(SF
j |X F

j,EF
j
) = H(SF

j ).

Proof. This follows from Definition 8.

Lemma 9 is used to derive the upper bound on the number of secure message symbols kS for
a ℓ-secure convertible codes.

Theorem 10. For positive integers kI , nI , kF , nF , ℓ, kS such that kI ≤ nI , kF ≤ nF , ℓ < min{kI , kF },
any (ℓ, kS)-secure [nI , kI ; nF , kF ] convertible code storing s ∈ FkS satisfies

H(S) ≤ min{λI(kI − ℓ), λF (kF − ℓ)}.

13



Proof. Suppose kI ≤ kF . Fix i ∈ [λI ] and suppose E ⊂ B ⊂ [nI ] such that |E| = ℓ and |B| = kI .
Then,

H(S) =
λI∑

i=1
H(SI

i ) ≤ λI(kI − ℓ).

where the last inequality follows from

H(SI
i ) = H(SI

i |Xi,E) − H(SI
i |Xi,B) (Lemma 9)

= H(SI
i |Xi,E) − H(SI

i |Xi,E,Xi,B\E}
= I(SI

i ;Xi,B\E|Xi,E)
≤ H(Xi,B\E|Xi,E) ≤ H(Xi,B\E) ≤ (kI − ℓ),

Suppose kF < kI . Fix j ∈ [λF ] and suppose E ⊂ B ⊂ [nF ] such that |E| = ℓ and |B| = kF .
Then, symmetric to the previous case, we have H(SF

j ) ≤ (kF − ℓ) and H(S) ≤ λF (kF − ℓ).
Putting the cases together, we have our desired bound.

Note that λI(kI − ℓ) ≤ λF (kF − ℓ) if and only if λI ≥ λF i.e., the upperbound on the secrecy
capacity is determined by whether there are more initial codewords (λI ≥ λF ) or there are more
final codewords (λI < λF ).

The intuition for the secrecy capacity upperbound is the tension between the information
needed for decoding and the information hidden by ℓ-secrecy. First, the MDS property of the
initial code implies that any kI initial codeword symbols of an initial codeword is sufficient for
decoding the underlying kI message symbols. An eavesdropper reading ℓ codeword symbols
can get at most ℓ symbols worth of information that, in the worst case, directly overlaps with the
kI message symbols, so at most kI − ℓ of these symbols may be meaningful. Since the same
holds for the final codewords, we have our secrecy capacity upperbound.

For intuition, we interpret the secrecy capacity upper bound in the context of the Erasure-
Erasure channel. In the secure convertible code model, λI codewords from the [nI , kI ] initial
code CI and λF codewords from the [nF , kF ] final code CF are sent through an Erasure-Erasure
channel. Since these encodings are a concatenation of MDS code codewords, the decoder must
chooses λI (resp. λF ) subsets of each initial (resp. final) codeword. The best an eavesdropper
can do is to choose to eavesdrop all their ℓ symbols in a particular codeword’s subset. Thus, a
secure convertible code is only possible if it handles ℓ-eavesdropped symbols on each codeword.

Note that an interesting extension of the above intuition is to consider if knowing the num-
ber of symbols that can be compromised per codeword would improve the secrecy capacity.
We denote the maximum information stored in this setting as fine-grained secrecy capacity.
Likewise, codes which satisfy this setting are denoted as fine-grained secure convertible codes.
Fine-grained secure conversion is explored further in chapter 5.

In the next section, we show that it is possible to construct secure convertible codes for all
valid parameters by bootstrapping existing access-optimal convertible codes with nested codes.

4.2 A Construction for General Parameters
In the context of securing convertible codes, we apply a concatenated code, where the outer code
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is a nested code, and the inner code is the initial code of the convertible code. Intuitively, the
nested code applies secrecy onto the message before it is stored on a convertible code. After
conversion, the applied secrecy from the nested code will be present in the final codewords.

Example 1: 1-secure [5, 4; 7, 6] Convertible Code Consider a 1-secure [5, 4; 7, 6] convert-
ible code over F7. Here, λI = 3 and λF = 2, so the upper bound on the secrecy capacity
is min{3(4 − 1), 2(6 − 1)} = 9. Let s = s1 . . . s9 ∈ F9

7 be the secure message symbols and let
κ ∈ F7 be a masking symbol. Consider the MDS 1-nested [4, 4] code DI with generator matrix

G =
[
Gs

Gκ

]
=


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 .

Then, set the message vectors in the initial configuration mI
1, mI

2, mI
3 ∈ F4

7 as

mI
1 = DI

([
s1 s2 s3 κ

])
=

[
ŝ1 ŝ2 ŝ3 κ

]
,

mI
2 = DI

([
s4 s5 s6 κ

])
=

[
ŝ4 ŝ5 ŝ6 κ

]
,

mI
3 = DI

([
s7 s8 s9 κ

])
=

[
ŝ7 ŝ8 ŝ9 κ

]
,

where ŝi = si + κ. An eavesdropper reading any 1 symbol learns nothing about the secure
message symbols; either they read masking symbol κ or an obfuscated secure symbol si + κ.
Note that the secure message symbols in any initial configuration message vector mI

i can be
decoded by reading all 4 of its symbols, following from the MDS property of DI .

Let (CI , CF ) be an access-optimal [5, 4; 7, 6] convertible code. The initial configuration code-
word is set to

xI =
(
CI

(
mI

1

)
, CI

(
mI

2

)
, CI

(
mI

3

))
,

Using the conversion procedure of the convertible code
(
CI , CF

)
on the initial codewords

results in final codewords CF
(
mF

1

)
, CF

(
mF

2

)
, where the message vectors in the final config-

uration mF
1 , mF

2 are defined as

mF
1 =

[
ŝ1 ŝ2 ŝ3 ŝ4 ŝ5 κ

]
,

mF
2 =

[
ŝ6 ŝ7 ŝ8 ŝ9 κ κ

]
.

Again, in the final configuration, any 1 symbol that an eavesdropper reads is either a masking
symbol or a masked secure symbol. Lastly, the secure message symbols can be decoded from
any final codeword j = 1, 2.

Example 2: 2-secure [7, 6; 5, 4]-Convertible Code Consider a 2-secure [7, 6; 5, 4] convertible
code over F7. Here, λI = 2 and λF = 3, so the upper bound secrecy capacity is min{2(6 −
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2), 3(4 − 2)} = 6. Let s = s1 . . . s6 ∈ F6
7 be the secure message symbols and let κ1, κ2 ∈ F2

7 be
the masking symbols. Consider the MDS 2-nested [4, 4] code DF with generator matrix

G =
[
Gs

Gκ

]
=


1 0 0 0
0 1 0 0
0 0 1 0
1 2 0 1

 .

Then, set the message vectors in the final configuration mF
1 , mF

2 , mF
3 ∈ F4

7 as

mF
1 = DF

([
s1 s2 κ1 κ2

])
=

[
s1 + κ1,1 s2 + κ1,2 κ1 κ2

]
,

mF
2 = DF

([
s3 s4 κ1 κ2

])
=

[
s3 + κ1,1 s4 + κ1,2 κ1 κ2

]
,

mF
3 = DF

([
s5 s6 κ1 κ2

])
=

[
s5 + κ1,1 s6 + κ1,2 κ1 κ2

]
,

where κi,j = iκ1 +jκ2. Observe that an eavesdropper reading any 2 symbols learn nothing about
the secure message symbols s. Note that the secure message symbols in any final configuration
message vector mF

j can be decoded by reading all 4 of its symbols, following from the MDS
property of DF .

Let (CI , CF ) be an access-optimal [7, 6; 5, 4] convertible code. The final configuration code-
word is set to

xF =
(
CF

(
mF

1

)
, CF

(
mF

2

)
, CF

(
mF

3

))
.

Define mI
i for each i ∈ [λI ] such that running the conversion procedure on the initial configura-

tion codeword xI =
(
CI(mI

i )
)

i∈[λI ]
results in xF . For instance, we can define message vectors

in the initial configuration mI
1, mI

2 ∈ F6
7 as

mI
1 =

[
s1 + κ1,1 s2 + κ1,2 s3 + κ1,1 s4 + κ1,2 κ1 κ2

]
,

mI
2 =

[
s5 + κ1,1 s6 + κ1,2 κ1 κ2 κ1 κ2

]
,

based on an access-optimal [7, 6; 5, 4] convertible code with corresponding message partitions.
The following construction shows how to use the approach in the previous example for gen-

eral parameters.

4.2.1 General Construction
By Theorem 10, the secrecy capacity is kS ≤ min{λI(kI − ℓ), λF (kF − ℓ)}. Without loss of gen-
erality, suppose that λI(kI − ℓ) ≤ λF (kF − ℓ), which is equivalent to λI ≥ λF .
Construction 11.

Preliminaries. Suppose the secure message symbols are s1, . . . , sλI(kI−ℓ) ∈ F and the re-
dundant symbols are κ1, . . . , κℓ ∈ F. Further, let sI

i = [si(k−ℓ)+1 . . . s(i+1)(k−ℓ)] for i ∈ [λI ]
and κ = [κ1 . . . κℓ]. By [12], there exists an access optimal [nI , kI ; nF , kF ] convertible code
(CI , CF ), which will be used in the construction. Next, let DI be an MDS ℓ-nested [kI , kI ] code

with generator GI =
[
GI

s

GI
κ

]
where GI

κ ∈ Fℓ×kI
is the generator of an MDS [kI , ℓ] code and GI

s
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is defined as GI
s =

 IkI−ℓ 0

 , where IkI−ℓ is the identity matrix of size kI − ℓ and

0 ∈ FkI×ℓ is the all-zeros matrix. It is not hard to confirm that DI is MDS i.e., GI is invertible.
Encoding in the initial configuration. Form the i’th message vector in the initial configu-
ration mI

i for each i ∈ [λI ] as mI
i = DI

([
sI

i κ
])

= sI
i GI

s + κGI
κ. Next, form the initial

configuration codeword as xI = (CI(mI
i ))i∈[λI ].

Decoding in the initial configuration. To decode any initial codeword CI(mI
i ), use the de-

coding algorithm for CI , then apply the decoding algorithm for DI (apply the inverse of its
generator matrix G−1).
Code conversion The final configuration (and final codewords) is constructed by running the
conversion procedure of the underlying convertible code as-is to obtain xF = (CF (mF

j ))j∈[λF ],
where mF

j are the message vectors in the final configuration.
Decoding in the final configuration. To decode all secure message symbols of a given final
codeword j ∈ [λF ]: 1) apply the decoder of CF to recover mF

j , 2) recover κ from mF
j , 3) Each

message symbol in the final configuration has at most one secure symbol siq to decode, where
i ∈ [λI ], and q ∈ [kI − ℓ]. For each message symbol (mF

j )p, where p ∈ [kF ], corresponding to
a unique secure symbol siq (as will be shown below), output (mF

j )p − (κGκ)q. In Theorem 12,
we prove that each assertion is valid and this procedure always correctly decodes siq.

When λI < λF , the construction follows along similar lines. In this case, we start the con-
struction by defining the final configuration and then work backwards. Form sF

j for j ∈ [λF ],
message vectors in the final configuration codeword mF

j , and final configuration codeword
xF = (CF (mF

j ))j∈[λF ] similarly. Then, define mI
i for each i ∈ [λI ] such that running the

conversion procedure on the initial configuration codeword xI = (CI(mI
i ))j∈[λF ] results in xF .

We prove that our construction is an optimal secure convertible code with optimal access
cost.

Theorem 12. For any integers nI , nF , kI , kF such that 0 ≤ kI ≤ nI , 0 ≤ kF ≤ nF , and ℓ < min{kI , kF },
construction 11 is an optimal ℓ-secure [nI , kI ; nF , kF ] convertible code with optimal access cost.

Proof. Without loss of generality, consider the construction when λI ≥ λF . First, the initial
codewords are decodable and ℓ-secure by construction of the initial configuration. Decodability
follows from the MDS property of codes CI and DI . Each initial codeword CI(mI

i ) is ℓ-secure
since each message vector in the initial configuration mI

i are codewords of code DI , which is
an ℓ-secure code. Next, the final codewords CF (mF

j ) retain ℓ-secrecy. If not, this implies that
the message vectors in the final configuration mF

j do not have ℓ-secrecy because the contrapos-
itive, that messages with ℓ-secrecy imply their encodings have ℓ-secrecy, is true. Then, there is
some subset of message symbols in the final configuration of size less than ℓ that reveal nonzero
information about the secure message symbols. However, these message symbols in the final
configuration were originally message symbols in the initial configuration and since initial mes-
sages are codewords of DI , there exists a subset of less than ℓ codeword symbols that reveal
information about the secure message symbols, contradicting the ℓ-secrecy of code DI .

It is left to show that each final codeword CF (mF
j ) is decoded correctly by our specified

algorithm. In step 1, mF
j is recovered by the decoder of CF . Next, step 2 is always possible i.e.,
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every message vector in the final configuration contains a copy of κ. Each final codeword will
contain all symbols of some message vector in the initial configuration mI

i due to properties of
the access-optimal convertible codes constructed by Maturana et al. [12]. In their construction,
for all PF

j ∈ PF , there is a PI
i ∈ PI such that PI

i ⊂ PF
j . Thus, each final codeword has all

symbols of some message vector in the initial configuration mI
i = DI

([
sI

i κ
])

. Thus, since
DI is MDS, we can recover κ.

For step 3, we first show that each message symbol in the final configuration symbol (mF
j )p

corresponds to at most one secure symbol siq. We show this for initial message symbols, since
message symbols in the final configuration are just a repartitioning of the symbols of message
vectors in the initial configuration. This is true by the construction of GI

s, which maps each
secure symbol to a unique symbol of a message vector in the initial configuration. Also, this
implies that since (mF

j )p has the unique secure symbol siq, (mF
j )p = (mI

i )q. Thus, the decoding
procedure correctly decodes siq since

(mF
j )p − (κGκ)q = (mI

i )q − (κGκ)q = (sI
i GI

s)q = siq

Since the constructed code uses the same conversion procedure as the underlying access optimal
convertible code (CI , CF ), our construction also achieves access optimal conversion. Lastly, the
proof for the construction when λI < λF follows a symmetric argument.

Remark. The field size requirement for the construction is the same as that of the access-optimal
convertible code used in [12]. More specifically, the construction utilizes an ℓ-nested code with
field size at most linear in min{kI , kF }. Thus, construction 11 has the same field size require-
ment as the utilized access-optimal convertible codes, and benefit from recent works improving
the field size requirement of access-optimal convertible codes [3]. In terms of computational
overhead, in addition to the decoding procedure of the underlying convertible code, there is an
additional decoding step for the MDS nested code in our secure convertible code construction.
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Chapter 5

Fine-grained Secure Convertible Codes

5.1 Increasing the Secrecy Capacity Upper bound
A significant constraint on the information capacity is the lack of information on where Eve’s ℓ
eavesdropped symbols lie. For instance, consider any ℓ-secure [nI , kI ; nF , kF ] convertible code.
In the worst case, all of Eve’s ℓ eavesdropped symbols may lie in a single initial or final codeword.
Intuitively, this is reflected in the secrecy capacity upper bound min{λI(kI − ℓ), λF (kF − ℓ)},
which can be interpreted as each initial and final codeword simultaneously containing ℓ eaves-
dropped symbols. A natural assumption which increases the secrecy capacity upper bound in this
scenario is the knowledge of the number of symbols that are eavesdropped on each initial and fi-
nal codeword. We denote a secure convertible code with this added assumption as a fine-grained
secure convertible codes. In this chapter, we give a definition for fine-grained secure convertible
codes, its secrecy capacity upper bound, and discussion of scenarios benefiting from fine-grained
secrecy over traditional secrecy.

Recall the notation from previous chapters. The partitions SI ,SF ∈ Π (kS), where |SI | = λI

and |SF | = λF are the secure symbol partitions that specify the mapping of secure message
symbols into the initial and final codewords. Likewise, for i ∈ [λI ], random variable SI

i corre-
sponds to the secure message symbols of i’th initial codeword, and for j ∈ [λF ], random variable
SF

j corresponds to the secure message symbols of the j’th final codeword. X I
i,T is the random

variable corresponding to the symbols of the i’th initial codeword projected onto the indices in
T ⊆ [nI ]. X F

i,O is the random variable defined similarly for the j’th final codeword projected onto
indices in O ⊆ [nF ]. Then, for each i ∈ [λI ], the vector xI

i ∈ FnI is the i’th initial codeword and
for each j ∈ [λF ] the vector xF

j ∈ FnF is the j’th final codeword.
We define fine-grained secure convertible codes as convertible codes secure up to specified

number of eavesdropped symbols on each initial and final codeword.

Definition 13. A (LI ,LF , kS)- Fine-Grained Secure [nI , kI ; nF , kF ] convertible code where

LI = {ℓI
i < kI : i ∈ [λI ]} and

LF = {ℓF
j < kF : j ∈ [λF ]}

is a [nI , kI ; nF , kF ] convertible code that can store a message s ∈ F
kS satisfying following de-

coding, fine-grained secrecy properties:
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1. Decoding (MDS property). For each i ∈ [λI ] and any subset B ⊂ [nI ] of size kI ,

H(SI
i |X I

i,B) = 0,

and for each j ∈ [λF ] and any subset B ⊂ [nF ] of size kF ,

H(SF
j |X F

j,B) = 0.

2. Fine-grained Secrecy. For any EI
1, . . . , EI

λI ⊂ [nI ], EF
1 , . . . ,EF

λF ⊂ [nF ] such that |EI
i | ≤

ℓI
i and |EF

j | ≤ ℓF
J for all i ∈ [λI ] and j ∈ [λF ],

H

S

∣∣∣∣∣∣
∧

i∈[λI ]
X I

EI
i
,

∧
j∈[λF ]

X F
EF

j

 = H(S).

For fine-grained secure convertible codes, we can derive a similar upper bound on the secrecy
capacity.

Theorem 14 (Fine-Grained secrecy capacity upper bound of Convertible Codes). For positive
integers kI , nI , kF , nF , and LI ,LF such that

LI = {ℓI
i < kI : i ∈ [λI ]} and

LF = {ℓF
j < kF : j ∈ [λF ]},

if C is an (LI ,LF )−fine-grained-secure [nI , kI ; nF , kF ] convertible code storing secure symbols
s ∈ FkS , then

H(S) ≤ min


λI∑

i=1
(kI − ℓI

i ),
λF∑
j=1

(kF − ℓF
j )

 .

Proof. Suppose kI ≤ kF . For each i ∈ [λI ], suppose Ei ⊂ Bi ⊂ [nI ] such that |Ei| = ℓI
i and

|Bi| = kI . Then,

H(SI
i ) = H(SI

i |X I
i,Ei

) − H(SI
i |X I

i,Bi
)

= H(SI
i |X I

i,Ei
) − H(SI

i |X I
i,Ei

,X I
i,Bi\Ei

}
= I(SI

i ;X I
i,Bi\Ei

|X I
i,Ei

)
≤ H(X I

i,Bi\Ei
|X I

i,Ei
)

≤ H(X I
i,Bi\Ei

)
≤ kI − ℓI

i ,

where

H(S) =
λI∑

i=1
H(SI

i ) ≤
λI∑

i=1
(kI − ℓI

i ).

The modification for the case when kF < kI is symmetrical, and we obtain the desired bound.
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Note that if we take ℓ = max
{∑

i∈[λI ] ℓI
i ,

∑
j∈[λF ] ℓF

j

}
then we equivalently have that for fine-

grained convertible codes, the secrecy capacity is upper bounded by kS ≤ k − ℓ. That is, with
fine-grained security, we remove the restrictive λI or λF term in the original secrecy capacity
upper bound.

For (LI ,LF , kS)-fine-grained secure convertible codes that reach the upper bound on secrecy
capacity, we drop the kS from the notation, simply denoting them as optimal (LI ,LF )-fine-
grained secure convertible codes.

5.2 Scenarios in the Fine-Grained Secrecy Model

In this section, we discuss plausible scenarios that may occur when a convertible code is compro-
mised by an eavesdropper. We observe in each scenario that the number of secure symbols on a
convertible code is undesirably small or even zero under the general secrecy model. In contrast,
fine-grained convertible codes will have a significantly higher number of secure symbols.

5.2.1 Scenario # 1: Compromised Access Set

E E EE E E E

Figure 5.1: An Example of the ’Compromised Access Set’ scenario on a [5, 4; 7, 6] Convert-
ible Code. All the bold-edge symbols accessed by the conversion procedure are eavesdropped
symbols. The secrecy capacity in this scenario is min{3(4 − 7), 2(6 − 7)} = −9, while the
fine-grained secrecy capacity upper bound is min{6, 12} = 6.

Recall that the general secure convertible code model introduced in Chapter 3 already cap-
tures the scenario when the codeword symbols accessed during the conversion process are com-
promised by an eavesdropper. By setting ℓ to be equal to the number of codeword symbols
accessed during conversion, an ℓ-secure convertible code is secure against the case where the
specific codeword symbols accessed during conversion are eavesdropped. However, observe that
the resulting number of secure symbols is at most min{λI(kI − ℓ), λF (kF − ℓ)} Thus, a secure
convertible code handling the case when the access set is compromised by an eavesdropper has
a small number of secure symbols, as pictured in Figure 5.1. In the given example, the upper
bound on the secrecy capacity is less than 0 i.e., there are no secure symbols that can possibly be
stored in the convertible code.

We can improve on the number of secure symbols in the Fine-grained secrecy model. First,
observe that in the previous example (Figure 5.1) the upper bound on the fine-grained secrecy
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capacity is significantly greater than the general secrecy capacity. The fine-grained secrecy ca-
pacity upperbound is 6, which allows for the possibility of having at most 6 secure message
symbols. This starkly contrasts the general secrecy capacity, which does not allow for even 1
secure message symbol. Indeed, we can construct fine-grained secure convertible codes for the
compromised access set scenario meeting the fine-grained secrecy upper bound.

The idea will be to follow a modification of the general secure convertible construction pre-
sented in Chapter 4. For the construction when λI ≥ λF , instead of applying a ℓ-nested code to
form each message vector in the initial configuration, where ℓ is the total number of eavesdropped
symbols, we apply a ℓI

i -nested code where ℓI
i is the number of eavesdropped symbols in the i’th

initial codeword. Symmetrically, when λI < λF , we instead apply a ℓF
j -nested code to form each

message vector in the final configuration, where ℓF
j is the number of eavesdropped symbols in

the j’th final codeword. We illustrate this procedure with the example below constructing the
fine-grained secure convertible code pictured in Figure 5.1.

Example: A ({1, 5, 1}, {0, 0})-fine-grained secure [5, 4; 7, 6] Convertible Code Let s =
s1 . . . s6 ∈ F

6
7 be the secure message symbols and let κ = κ1 . . . κ4 ∈ F

4
7 be the masking

symbols. Consider a MDS 1-nested [4, 4] code DI
1 and a MDS 4-nested [4, 4] code DI

2 with
respective generator matrix G1, G2 defined as

G1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 , G2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then, set the message vectors in the initial configuration mI
1, mI

2, mI
3 ∈ F4

7 as

mI
1 = DI

1

([
s1 s2 s3 κ1

])
=

[
ŝ1 ŝ2 ŝ3 κ1

]
,

mI
2 = DI

4

([
κ1 κ2 κ3 κ4

])
=

[
κ1 κ2 κ3 κ4

]
,

mI
3 = DI

1

([
s4 s5 s6 κ1

])
=

[
ŝ4 ŝ5 ŝ6 κ1

]
,

where ŝi = si + κ1.
Let (CI , CF ) be an access-optimal [5, 4; 7, 6] convertible code. The initial configuration code-

word is set to
xI =

(
CI

(
mI

1

)
, CI

(
mI

2

)
, CI

(
mI

3

))
,

Using the conversion procedure of the convertible code
(
CI , CF

)
on the initial codewords

results in final codewords CF
(
mF

1

)
, CF

(
mF

2

)
, where the message vectors in the final config-

uration mF
1 , mF

2 are defined as

mF
1 =

[
ŝ1 ŝ2 ŝ3 κ1 κ1 κ2

]
,

mF
2 =

[
ŝ4 ŝ5 ŝ6 κ1 κ3 κ4

]
.

The secure message symbols can be decoded from any final codeword j = 1, 2, and there are no
eavesdropped symbols in the final configuration codeword.
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5.2.2 Scenario # 2: General ‘Worst-case Eavesdropping’

E E E

Initial configuration.
Final configuration.

Figure 5.2: An example of a ’Worst-Case Eavesdropping’ on a [5, 4; 7, 6] Convertible Code. All
Three Eavesdropped symbols lie in the first initial codeword. This example corresponds to a
({3, 0, 0}, {0, 0})-fine-grained secure convertible code.

In this scenario, all the eavesdropped symbols lie within a single initial or final codeword.
The upper bound on the fine-grained secrecy capacity is significantly improved from the general
secrecy capacity in this case. Illustrated in Figure 5.2, the general secrecy capacity upper bound
is at most 3, while the fine-grained secrecy capacity is at most 9.

A fine-grained secure convertible code construction for this scenario follows from a similar
procedure to the secure convertible code general construction. Just like in the previous scenario,
the idea is that we only apply the nested code to the initial or final codeword which contain
eavesdropped symbols. In the example in Figure 5.2, there are 9 secure symbols s ∈ F9 and 3
masking symbols κ ∈ F3. Construct the message vectors of the initial configuration such that
the message vector for the first initial codeword contains the 3 masking symbols κ (the rest of
the secure symbols are placed arbitrarily). Then, we apply a 3-nested [4, 4] code only to the first
message vector, and apply the convertible code as described previously.

5.2.3 Scenario # 3: ‘Long-term’ Eavesdropped Symbols

This scenario captures eavesdropped codeword symbols in the initial configuration codeword that
persist through the conversion process. That is, the corresponding final codeword symbol after
conversion will also be an eavesdropped symbol. We can model these long-term eavesdropped
symbols using Fine-grained secure convertible codes. Figure 5.3 presents an example of when
long-term eavesdropped symbols ’merge’ i.e., when λI ≥ λF . In contrast, Figure 5.4 models
when long-term eavesdropped symbols ’split’ i.e., when λI < λF .

We leave the construction of optimal fine-grained secure convertible codes as future work.
We note that while we can use the general secure convertible code construction for these cases,
the number of secure symbols is significantly much lower than the fine-grained secrecy capacity
upper bound. For instance, in both of the examples presented in Figures 5.3 and 5.4, the general
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E E

E E

Initial configuration.
Final configuration.

Figure 5.3: An example of ’Long-term’ Eavesdropped Symbols within a [3, 2; 5, 4] Convertible
Code. The eavesdropped initial codeword symbols persist through the conversion procedure
where their corresponding final codeword symbols are also eavesdropped symbols. This example
corresponds to a ({1, 1}, {1})-fine-grained secure convertible code.

E E EE

EEEE

Initial configuration.
Final configuration.

Figure 5.4: An example of ’Long-term’ Eavesdropped Symbols within a [9, 8; 5, 4] Convert-
ible Code. This represents a ’split’ case, where long-term eavesdropped symbols start on the
same initial codeword and end on different final codewords. This example corresponds to a
({4}, {2, 2})-fine-grained secure convertible code.

construction cannot store any secure symbols, while the fine-grained secrecy capacity upper
bounds are 4 and 8 respectively.
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Chapter 6

Conclusion & Future Work

In this thesis, we introduce an information-theoretic secrecy model for convertible codes in the
presence of eavesdroppers. We derived fundamental upper bounds on the number of message
symbols that can be stored securely using convertible codes that provide security against eaves-
droppers while maintaining access cost optimality of code conversions. We also presented ex-
plicit construction of optimal secure convertible codes meeting these bounds. Additionally, we
discussed the fine-grained secrecy assumption where we additionally know the number of the
eavesdropped symbols in each initial and final codeword. We derived stronger bounds beyond
the original secrecy capacity and explored scenarios that would benefit from the additional as-
sumption of fine-grained secrecy.

This work opens up several avenues for future work.

1. Bandwidth-Optimal Convertible Codes. The focus of this thesis was convertible codes
in an access-cost setting. A natural extension is to consider the bandwidth-setting, which
models and optimizes the bandwidth cost of conversion within distributed storage systems
by allowing partial symbol downloads. In previous work, bandwidth-optimal convertible
codes have been constructed [10, 11] by augmenting existing access-optimal convertible
codes. While this same procedure can be done on our secure access-optimal convertible
codes to convert it into a bandwidth-optimal convertible code, the resulting code may not
necessarily preserve secrecy nor reach the secrecy capacity upperbound. As in the regen-
erating code setting [15, 17], the secrecy capacity may be lower due to the eavesdropper
eavesdropping on the set of symbols downloaded for node recovery. To understand the
secrecy capacity of convertible codes when eavesdroppers are allowed to access partial
symbols, we will need to augment the bandwidth conversion model to include eavesdrop-
pers. Thus, expanding secure convertible codes into the bandwidth setting is an interesting
future direction.

2. Fine-grained General Codes. In the previous chapter, the secrecy capacity and specific
constructions of fine-grained-secure convertible codes were explored. Constructions for
general parameters remain a non-trivial challenge along with other unexplored scenario
constructions.

3. Active Adversaries. In this thesis, we considered convertible codes that were secure
against a passive eavesdropper that can read any ℓ convertible code symbols. We can
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also consider convertible codes which are secure against active adversaries. Active ad-
versaries can disrupt the conversion process by maliciously corrupting symbols. Active
adversaries were previously studied in in the context of codes for storage systems under
the setting of regenerating codes [15, 17], where constructions needed to accommodate for
possibly corrupted symbols when undergoing symbol repair. The adversary’s additional
power is also reflected in the upperbound on the number of message symbols that can be
securely stored, which is reduced as compared to the upper bound of the secrecy capacity
against a passive eavesdropper. Understanding convertible codes that are secure against
active eavesdroppers is a natural next step.

4. Cryptographic Assumptions. There is a broad, exciting line of work incorporating cryp-
tography in traditional coding theory problems to provide constructions beyond worst-case
parameter bounds [1, 6, 13, 18]. The adversary causing corruptions (e.g. error, erasure,
or edit errors) in codewords is assumed to be computationally-bounded, allowing the use
of cryptographic primitives that ultimately reduce the rate while improving the corruption
tolerance of the code. Relaxing worst-case guarantees within distributed storage coding
problems may lead to new breakthrough solutions, as they have in other coding theory
problems. Specifically, for the conversion problem, we conjecture that if an eavesdrop-
per reading any ℓ nodes is bounded to polynomial-time computations, one can construct
ℓ-secure convertible codes storing a number of secure symbols beyond the information-
theoretic secrecy capacity upperbound derived in this thesis.
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