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Abstract—Large-scale distributed storage systems rely on era-
sure codes to ensure fault tolerance against node failures. Due
to the observed changing failure rates within these systems, code
redundancy tuning, or code conversion has been shown to reduce
storage cost. Previous work has developed theoretical bounds
and constructions for convertible codes, a specialized class of
erasure codes optimizing either access or bandwidth costs during
conversion.

In this paper, we address the challenge of securing convertible
codes in the presence of an eavesdropper. We introduce an
eavesdropper-secrecy model for convertible codes wherein an
eavesdropper gaining read access to a subset of the code-
word symbols learns nothing (information-theoretically) about
the underlying message. We then focus on access-cost optimal
convertible codes, and we then derive the information-theoretic
upper bound on the number of message symbols that can be
stored securely. Finally, we provide an explicit construction that
simultaneously reaches this secrecy bound while admitting access-
cost optimal conversion using concatenation of nested codes with
traditional convertible codes. Since our construction works with
all traditional access-optimal convertible codes, we show that
access-optimal secure convertible codes exist for all message and
codeword length parameters.

I. INTRODUCTION

Erasure codes provide a low-storage overhead solution to
ensure fault tolerance against node failures in large-scale
distributed storage systems [1], [2]. In this approach, the data
is divided into k message symbols, which are then encoded
using an [n, k] erasure code into n coded symbols, forming
a codeword using an [n, k] erasure code. These codewords
are distributed across n different nodes in the storage system.
To achieve optimal storage efficiency and fault tolerance,
Maximum Distance Separable (MDS) codes are typically
employed. Informally, the MDS property ensures data integrity
by allowing recovery of the original data even if up to (n−k)
nodes fail. In other words, any k out of the n codeword
symbols are sufficient to decode the original data.

The parameters n and k are selected based on the observed
node failure rates, which, as shown by Kadekodi et al., can
vary over time [3]. During periods of high failure rates, n and k
are configured to achieve a high redundancy ratio n

k , ensuring
greater fault tolerance at the expense of increased storage
overhead. Conversely, during periods of low failure rates, a
lower redundancy ratio is preferred, reducing storage overhead.
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However, changing the parameters n and k on already encoded
data using the conventional approach—decoding the data from
the initial code and re-encoding it with a new code—incurs
significant costs in terms of I/O, and network bandwidth [4].

This problem has been formalized under the theoretical
framework of code conversion [4], which defines the conver-
sion of data from an initial code CI with parameters [nI , kI ]
to a final code CF with parameters [nF , kF ]. Convertible
codes [4] are a class of codes that by design minimize the costs
of code conversion, while maintaining certain decodability
guarantees (such as the MDS property) in both the initial and
final codes. Convertible codes have been studied primarily
in terms of minimizing conversion costs, with two key cost
metrics: access cost [4], [5], which measures the number of
symbols accessed during conversion, and bandwidth cost [6],
[7], which measures the amount of information downloaded.
Access-optimal convertible codes are known for all parameter
settings, while bandwidth-optimal convertible codes have been
developed for certain parameter regimes.

In this paper, we consider the problem of information-
theoretic security of convertible codes. Specifically, we inves-
tigate security against passive eavesdroppers who gain read
access to some of codeword symbols stored in the system
and try to learn information about the message symbols. This
problem setting has been inspired by several prior works
on information-theoretic security in distributed storage codes
under various models, such as secure regenerating codes [8].
We first introduce a secrecy model for convertible codes, in-
corporating requirements for data decoding, code conversion,
and eavesdropper secrecy. For a specified security parameter ℓ,
the objective is to ensure that an eavesdropper who reads any
ℓ code symbols of a convertible code learns no information
about the message symbols.

We then focus on access-optimal convertible codes and
establish an upper bound on the number of message symbols
that can be securely stored using convertible codes using an
information-theoretic approach. Finally, we present an explicit
construction of an access-optimal secure convertible code
that achieves this upper bound for all parameter settings.
The proposed construction uses code concatenation of nested
codes [9] with traditional convertible codes [4], [5].

The outline of the paper is as follows. Section II presents
the secrecy model for convertible codes. Section III proves
the secrecy capacity of any secure convertible code. Section
IV presents a construction of access-optimal secure convertible



codes that reach secrecy capacity for all parameters. Lastly, the
paper concludes with a discussion in Section V.

A. Notations Used

This section introduces notation used throughout the paper.
Caligraphic, uppercase letters T denote sets. Bold lowercase
letters will denote vectors, e.g. a n-length vector, x ∈ Fn ,
where F is a finite field. When relevant, we denote Fq as
the finite field of size q. The i’th symbol of a vector x is
written (non-bold) as xi. A vector subscripted with a set, e.g.
xS , denote the projection of the vector to each coordinate in
the set x e.g. xS = [xi : i ∈ S]. Uppercase letters denote
matrices, e.g. a matrix of size k × n, G ∈ F

k×n, while
Calligraphic letters C will denote codes. For any vector x, its
corresponding random variable is denoted as X (uppercase,
calligraphic, and bold). Let [i] = {1, 2, . . . , i}. Let Π(i) be
the set of all partitions of [i]. Lastly, let H be the entropy
function (in base |F|).

II. SECRECY MODEL FOR CODE CONVERSIONS

This section presents the eavesdropper threat model for
distributed storage systems that employ convertible codes. The
formal definition of a convertible code is first provided to
establish intuition and motivation for the necessary modifi-
cations to accommodate eavesdroppers. The definition of a
secure convertible code is then introduced, encompassing both
the original properties of convertible codes and the added
requirement of eavesdropper security.

The traditional convertible codes framework captures the
conversion between an initial and a final configuration of
stored data [4]. In the initial configuration, data is encoded
using an (nI , kI) code CI , while in the final configuration,
the same data is encoded using an (nF , kF ) code CF . Non-
trivial conversion occurs when kI ̸= kF , allowing multiple
codewords in both configurations. Let m ∈ Fk be the message
symbols to be stored, where k = lcm(kI , kF ). The initial
configuration contains λI = k/kI codewords, and the final
configuration contains λF = k/kF codewords. The message
symbols in each codeword is determined by the initial and
final partitions PI and PF of [k]. A conversion procedure is
then defined to transform the initial configuration into the final
one. The access cost of conversion is measured by the number
of codeword symbols used by the conversion procedure.

More formally,
Definition 1 (Convertible Code [4]): A [nI , kI ; nF , kF ] con-

vertible code is defined by:
1) A pair of codes (CI , CF ) where CI is a (nI , kI) code over
F and CF is a (nF , kF ) code.

2) A pair of partitions (PI ,PF ) ∈ Π(k) where each subset
PI
i ∈ PI has size kI , and each PF

j ∈ PF has size kF .
3) A conversion procedure that takes initial

codewords {CI(mPI
i
) : PI

i ∈ PI} to final codewords
{CF (mPF

j
) : PF

j ∈ PF }.
A convertible code is MDS if the initial and final code are

both MDS. Similarly, a convertible code is linear if the initial
and final code are both linear.

E

E E

Initial configuration.

Final configuration.

Fig. 1. A [5, 4; 7, 6] convertible code with 3 symbols read by the eavesdropper
(pink circles). Initial codewords are on the top of the diagram while the final
codewords are on the bottom of the diagram. The initial/final codewords make
up the initial/final configuration. Note that an eavesdropper can choose to read
symbols across different initial and final codewords, or they can read all the
symbols from a single codeword.

We define secure convertible codes by enhancing the ex-
isting convertible code framework with protection against
eavesdroppers. A message m ∈ Fk is stored on the convertible
code, resulting in an initial/final configuration comprising of
initial/final codewords. Now, suppose that an eavesdropper
gains read-access to any ℓ < min{kI , kF } codeword symbols,
spanning across initial and final configuration, as illustrated in
Figure 1.

Note that the eavesdropper may choose to read some out
of the ℓ compromised symbols from the initial configuration
and/or wait for the conversion to occur to choose the remaining
compromised symbols from the final configuration. Also, note
that this secrecy model captures the special case when the
codeword symbols downloaded during the conversion process
are compromised, in the access-cost setting. This scenario is
identical to the case of eavesdropper reading the corresponding
codeword symbols in the initial configuration.

We introduce additional notation to formally define the
desired properties of secure convertible codes under passive
eavesdroppers. Let s ∈ FkS be the message symbols to be
securely stored for some kS ∈ N. Let S be the corresponding
random variable, which is assumed to be uniformly distributed
over FkS representing (incompressible) data. Hence H(S) =
kS .

Next, we introduce notation to specify the partition of the
secure message symbols into the initial and final codewords.
Let SI ,SF ∈ Π(kS), where |SI | = λI and |SF | = λF denote
secure symbol partitions that specify the mapping of secure
message symbols into the initial and final codewords. Like-
wise, for i ∈ [λI ] let SI

i be the random variable corresponding
to the secure message symbols of i’th initial codeword, and
for j ∈ [λF ], let SF

j be the random variables corresponding
to the secure message symbols of the j’th final codeword.

In traditional convertible codes, initial and final configu-
rations are implicitly defined as the collection of their cor-
responding codewords. However, to analyze an eavesdropper
who may read symbols across multiple codewords during the
conversion (see figure 1), it is more convenient to define these
configurations as vectors. Let xI ∈ FλInI represent the vector
consisting of all the codewords in the initial configuration (in
the implicit ordering specified by the Convertible code), and
xF ∈ FλF nF represent the same for the final configuration.
Then, for each i ∈ [λI ], the vector xI

i ∈ FnI is the i’th initial



codeword and for each j ∈ [λF ] the vector xF
j ∈ FnF is the

j’th final codeword.
Definition 2: A (ℓ, kS)−Secure [nI , kI ; nF , kF ] convertible

code is a [nI , kI ; nF , kF ] convertible code that can store a
message s ∈ FkS satisfying following decoding and secrecy
properties:

1) Decoding (MDS property). For each i ∈ [λI ] and any
subset B ⊂ [nI ] of size kI ,

H(SI
i |X

I
i,B) = 0,

and for each j ∈ [λF ] and any subset B ⊂ [nF ] of size
kF ,

H(SF
j |X

F
j,B) = 0.

2) ℓ-Secrecy. For any EI ⊂ [λInI ], EF ⊂ [λF nF ] of
combined size

∣∣EI
∣∣+ ∣∣EF

∣∣ ≤ ℓ,

H(S | X I
EI ,XF

EF ) = H(S).

As in traditional convertible codes, the access cost is measured
by the number of initial symbols accessed in the conversion
procedure. We are interested in secure convertible codes that
maximize kS and minimize access cost simultaneously. In the
following section, we prove the information-theoretic upper
bound on the number of secure message symbols that be stored
using a convertible code. For (ℓ, kS)-secure convertible codes
that reach the upper bound secrecy capacity, we drop the kS
from the notation, simply denoting them as optimal ℓ-secure
convertible codes.

III. UPPER BOUND ON THE SECRECY CAPACITY OF
CONVERTIBLE CODES

In order to derive an upper bound on the secrecy capacity,
we first address a necessary nuance of ℓ-secure convertible
codes. In this model, an eavesdropper is given the highest level
of flexibility, where she can choose any symbol within the
initial or final configuration to access. In particular, she may
choose to read only the symbols of an individual codeword.
Thus, in order for ℓ-secrecy to hold for the overall convertible
code, each codeword must be secure to ℓ eavesdroppers. This
intuition is captured in the following lemma.

Lemma 3: For any (ℓ, kS)-secure [nI , kI ; nF , kF ] convert-
ible code with secure message symbols s and symbol parti-
tions (SI ,SF ) with initial and final configuration codewords
xI ∈ FλInI ,xF ∈ FλF nF , the following hold:

1) Initial codeword Secrecy: For any i ∈ [λI ] and subset
EI
i ⊂ [nI ] of size ℓ, we have H(SI

i |X
I
i,EI

i
) = H(SI

i ).

2) Final codeword Secrecy: For any j ∈ [λF ] and subset
EF
j ⊂ [nF ] of size ℓ, H(SF

j |X
F
j,EF

j
) = H(SF

j )− .

Proof: This follows from ℓ-secrecy of definition 2.
Lemma 3 is used to derive the upper bound on the number of
secure message symbols kS for a ℓ-secure convertible codes.

Theorem 4: For positive integers kI , nI , kF , nF , ℓ, kS such
that kI ≤ nI , kF ≤ nF , ℓ < min{kI , kF }, any (ℓ, kS)-secure
[nI , kI ; nF , kF ] convertible code satisfies

kS ≤ min{λI(kI − ℓ), λF (kF − ℓ)}.

Fig. 2. A systematic access-optimal [5, 4; 7, 6] convertible code, where
only the non-systematic symbols are changed. The bold-edge symbols were
accessed by the conversion procedure. The arrows represent which accessed
symbol was used in the computation of each new non-systematic symbol in
the final codewords.

Proof: Suppose kI ≤ kF . Fix i ∈ [λI ] and suppose E ⊂
B ⊂ [nI ] such that |E| = ℓ and |B| = kI . Then,

kS = H(S) =

λI∑
i=1

H(SI
i ) ≤ λI(kI − ℓ).

where the last inequality follows from

H(SI
i ) = H(SI

i |X i,E)−H(SI
i |X i,B) (Lemma 3)

= H(SI
i |X i,E)−H(SI

i |X i,E,X i,B\E}
= I(SI

i ;X i,B\E|X i,E)

≤ H(X i,B\E|X i,E) ≤ H(X i,B\E) ≤ (kI − ℓ),

Suppose kF < kI . Fix j ∈ [λF ] and suppose E ⊂ B ⊂ [nF ]
such that |E| = ℓ and |B| = kF . Then, symmetric to the
previous case, we have H(SSFj ) ≤ (kF −ℓ) and kS ≤ λF (kF −
ℓ). Putting the cases together, we have our desired bound.
Note that λI(kI − ℓ) ≤ λF (kF − ℓ) if and only if λI ≥ λF

i.e., the upperbound on the secrecy capacity is determined by
whether there are more initial codewords (λI ≥ λF ) or there
are more final codewords (λI < λF ).

The intuition for the secrecy capacity upperbound is the
tension between the information needed for decoding and the
information hidden by ℓ-secrecy. First, the MDS property of
the initial code implies that any kI initial codeword symbols of
an initial codeword is sufficient for decoding the underlying
kI message symbols. An eavesdropper reading ℓ codeword
symbols can get at most ℓ symbols worth of information that,
in the worst case, directly overlaps with the kI message sym-
bols, so at most kI − ℓ of these symbols may be meaningful.
Since the same holds for the final codewords, we have our
secrecy capacity upperbound.

IV. ACCESS-OPTIMAL SECURE CONVERTIBLE CODE
CONSTRUCTIONS FOR ALL PARAMETERS

In this section, access-optimal secure convertible codes that
reach the secrecy capacity derived in Theorem 4 are con-
structed for all parameters kI , nI , kF , nF , and ℓ. As a starting
point, traditional access-optimal convertible code constructions
for all parameters from Maturana et al. [5] are used. For exam-
ple, Figure 2 depicts an access-optimal [5, 4; 7, 6] convertible
code. The proposed construction concatenates existing access-
optimal convertible codes with another code, known as the
nested code [9].



A. Nested codes

Nested codes were constructed by Subramanian and
McLaughlin in the context of securing messages through a
wiretap channel with erasures [9]. The wiretap channel with
erasures considers the eavesdropper-security and decoding of
a single codeword: any ℓ codeword symbols reveal nothing of
the secured symbols, and any k codeword symbols suffices to
decode the message. Subramanian and McLaughlin show that
the secrecy capacity is (k − ℓ). Given this, they constructed
nested codes to satisfy the requirements of the wiretap channel
with erasures while reaching secrecy capacity.

Definition 5 (Nested Code [9]): An MDS [n, k] code C is a

ℓ-nested code if it has a generator matrix G =

[
Gs

Gκ

]
∈ Fk×n,

where Gκ ∈ Fℓ×n is a generator matrix of a MDS code.
First, a new message vector of length k is constructed com-
prising of the message symbols to be encoded, s ∈ Fk−ℓ, and
some masking symbols, κ ∈ Fℓ, where each masking symbol
is chosen uniformly at random over F. Let m =

[
s κ

]
be

this message vector. Then, its encoding is mG = sGs+κGκ.
One can verify that no information about the secure message
symbols s is leaked from any j < ℓ codeword symbols due
to the addition of the encoding of the masked symbols κGκ.
The example below illustrates this:

1) Example: Consider a nested coding for n = k =
4, ℓ = 2. Suppose D is the MDS 2-nested code over F5

with generator matrix G defined as G =


1 0 0 0
0 1 0 0
1 1 1 0
1 2 0 1

 . The

secrecy capacity is 4−2 = 2. The secure message symbols are
s1, s2 ∈ F4 and the (uniformly random) masking symbols are
κ1, κ2 ∈ F5. Let the message be m =

[
s1 s2 κ1 κ2

]
.

Then D(m) =
[
s1 + κ1,1 s2 + κ1,2 κ1 κ2

]
, where

κi,j = iκ1 + jκ2. Any eavesdropper reading any 2 symbols
learns nothing about the secure message symbols s1 and s2.

B. Constructing Access-Optimal Secure Convertible Codes

In the context of securing convertible codes, we apply a
concatenated code, where the outer code is a nested code,
and the inner code is the initial code of the convertible code.
Intuitively, the nested code applies secrecy onto the message
before it is stored on a convertible code. After conversion, the
applied secrecy from the nested code will be present in the
final codewords.

1) Example: Consider a 1-secure [5, 4; 7, 6] convertible
code over F7. Here, λI = 3 and λF = 2, so the upperbound
on the secrecy capacity is min{3(4− 1), 2(6− 1)} = 9. Let
s = s1 . . . s9 be the secure message symbols and let κ ∈ F be
a masking symbol. Consider the MDS 1-nested [4, 4] code DI

with generator G =

[
Gs

Gκ

]
=


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1

 . Then, set the

message vectors in the initial configuration mI
1,m

I
2,m

I
3 ∈ F4

7

as

mI
1 = DI

([
s1 s2 s3 κ

])
=

[
ŝ1 ŝ2 ŝ3 κ

]
,

mI
2 = DI

([
s4 s5 s6 κ

])
=

[
ŝ4 ŝ5 ŝ6 κ

]
,

mI
3 = DI

([
s7 s8 s9 κ

])
=

[
ŝ7 ŝ8 ŝ9 κ

]
,

where ŝi = si + κ. An eavesdropper reading any 1 symbol
learns nothing about the secure message symbols; either they
read κ or an obfuscated secure symbol si + κ. Note that the
secure message symbols in any initial configuration message
vector mI

i can be decoded by reading all 4 of its symbols,
following from the MDS property of DI .

Let (CI , CF ) be an access-optimal [5, 4; 7, 6] convertible
code. The initial configuration codeword is set to

xI =
(
CI

(
mI

1

)
, CI

(
mI

2

)
, CI

(
mI

3

))
.

Using the conversion procedure of the convertible code(
CI , CF

)
on the initial codewords results in final codewords

CF
(
mF

1

)
, CF

(
mF

2

)
, where the message vectors in the final

configuration mF
1 ,m

F
2 are defined as

mF
1 =

[
ŝ1 ŝ2 ŝ3 ŝ4 ŝ5 κ

]
,

mF
2 =

[
ŝ6 ŝ7 ŝ8 ŝ9 κ κ

]
.

Again, in the final configuration, any 1 symbol that an eaves-
dropper reads is either a masking symbol or a masked secure
symbol. Lastly, the secure message symbols can be decoded
from any final codeword j = 1, 2.

The following construction shows how to use the approach
in the previous example for general parameters.

2) General construction: By Theorem 4, the secrecy ca-
pacity is kS ≤ min{λI(kI − ℓ), λF (kF − ℓ)}. Without loss of
generality, suppose that λI(kI − ℓ) ≤ λF (kF − ℓ), which is
equivalent to λI ≥ λF .

Construction 6:
Preliminaries. Suppose the secure message symbols are
s1, . . . , sλI(kI−ℓ) ∈ F and the redundant symbols are
κ1, . . . , κℓ ∈ F. Further, let sIi = [si(k−ℓ)+1 . . . s(i+1)(k−ℓ)]
for i ∈ [λI ] and κ = [κ1 . . . κℓ]. By [5], there exists an
access optimal [nI , kI ; nF , kF ] convertible code (CI , CF ),
which will be used in the construction. Next, let DI be

an MDS ℓ-nested [kI , kI ] code with generator GI =

[
GI

s

GI
κ

]
where GI

κ ∈ Fℓ×kI is the generator of an MDS [kI , ℓ] code

and GI
s is defined as GI

s =

 IkI−ℓ 0

 , where

IkI−ℓ is the identity matrix of size kI − ℓ and 0 ∈ FkI×ℓ

is the all-zeros matrix. It is not hard to confirm that DI is
MDS i.e., GI is invertible.
Encoding in the initial configuration. Form the i’th mes-
sage vector in the initial configuration mI

i for each i ∈ [λI ]
as mI

i = DI
([
sIi κ

])
= sIiG

I
s + κGI

κ. Next, form the
initial configuration codeword as xI = (CI(mI

i ))i∈[λI ].
Decoding in the initial configuration. To decode any initial
codeword CI(mI

i ), use the decoding algorithm for CI , then



apply the decoding algorithm for DI (apply the inverse of
its generator matrix G−1).
Code conversion The final configuration (and final code-
words) is constructed by running the conversion proce-
dure of the underlying convertible code as-is to obtain
xF = (CF (mF

j ))j∈[λF ], where mF
j are the message vectors

in the final configuration.
Decoding in the final configuration. To decode all secure
message symbols of a given final codeword j ∈ [λF ]: 1)
apply the decoder of CF to recover mF

j , 2) recover κ from
mF

j , 3) Each message symbol in the final configuration has
at most one secure symbol siq to decode, where i ∈ [λI ],
and q ∈ [kI − ℓ]. For each message symbol (mF

j )p, where
p ∈ [kF ], corresponding to a unique secure symbol siq
(as will be shown below), output (mF

j )p − (κGκ)q . In
Theorem 7, we prove that each assertion is valid and this
procedure always correctly decodes siq.

When λI < λF , the construction follows along similar lines.
In this case, we start the construction by defining the final
configuration and then work backwards. Form sFj for j ∈ [λF ],
message vectors in the final configuration codeword mF

j ,
and final configuration codeword xF = (CF (mF

j ))j∈[λF ]

similarly. Then, define mI
i for each i ∈ [λI ] such that running

the conversion procedure on the initial configuration codeword
xI = (CI(mI

i ))i∈[λI ] results in xF .

We prove that our construction is an optimal secure con-
vertible code with optimal access cost.

Theorem 7: For any integers nI , nF , kI , kF such that
0 ≤ kI ≤ nI , 0 ≤ kF ≤ nF , and ℓ < min{kI , kF }, construc-
tion 6 is an optimal ℓ-secure [nI , kI ; nF , kF ] convertible code
with optimal access cost.

Proof: Without loss of generality, consider the construc-
tion when λI ≥ λF . First, the initial codewords are decodable
and ℓ-secure by construction of the initial configuration. De-
codability follows from the MDS property of codes CI and DI .
Each initial codeword CI(mI

i ) is ℓ-secure since each message
vector in the initial configuration mI

i are codewords of code
DI , which is an ℓ-secure code. Next, the final codewords
CF (mF

j ) retain ℓ-secrecy. If not, this implies that the message
vectors in the final configuration mF

j do not have ℓ-secrecy
because the contrapositive, that messages with ℓ-secrecy imply
their encodings have ℓ-secrecy, is true. Then, there is some
subset of message symbols in the final configuration of size
less than ℓ that reveal nonzero information about the secure
message symbols. However, these message symbols in the
final configuration were originally message symbols in the
initial configuration and since initial messages are codewords
of DI , there exists a subset of less than ℓ codeword symbols
that reveal information about the secure message symbols,
contradicting the ℓ-secrecy of code DI .

It is left to show that each final codeword CF (mF
j ) is

decoded correctly by our specified algorithm. In step 1, mF
j

is recovered by the decoder of CF . Next, step 2 is always
possible i.e., every message vector in the final configuration
contains a copy of κ. Each final codeword will contain all

symbols of some message vector in the initial configuration
mI

i due to properties of the access-optimal convertible codes
constructed by Maturana et al. [5]. In their construction, for all
PF
j ∈ PF , there is a PI

i ∈ PI such that PI
i ⊂ PF

j . Thus, each
final codeword has all symbols of some message vector in the
initial configuration mI

i = DI
([

sIi κ
])

. Thus, since DI

is MDS, we can recover κ.
For step 3, we first show that each message symbol in the

final configuration symbol (mF
j )p corresponds to at most one

secure symbol siq . We show this for initial message symbols,
since message symbols in the final configuration are just a
repartitioning of the symbols of message vectors in the initial
configuration. This is true by the construction of GI

s, which
maps each secure symbol to a unique symbol of a message
vector in the initial configuration. Also, this implies that since
(mF

j )p has the unique secure symbol siq, (m
F
j )p = (mI

i )q.
Thus, the decoding procedure correctly decodes siq since

(mF
j )p − (κGκ)q = (mI

i )q − (κGκ)q = (sIiG
I
s)q = siq

Since the constructed code uses the same conversion procedure
as the underlying access optimal convertible code (CI , CF ),
our construction also achieves access optimal conversion.
Lastly, the proof for the construction when λI < λF follows
a symmetric argument.

Remark: The field size requirement for the construction
is the same as that of the access-optimal convertible code
used in [5]. More specifically, the construction utilizes an ℓ-
nested code with field size at most linear in min{kI , kF }.
Thus, construction 6 has the same field size requirement
as the utilized access-optimal convertible codes, and benefit
from recent works improving the field size requirement of
access-optimal convertible codes [10]. In terms of computa-
tional overhead, in addition to the decoding procedure of the
underlying convertible code, there is an additional decoding
step for the MDS nested code in our secure convertible code
construction.

V. CONCLUSION

In this paper, we introduce an information-theoretic secrecy
model for convertible codes in the presence of eavesdroppers.
We derived fundamental upper bounds on the number of
message symbols that can be stored securely using convertible
codes that provide security against eavesdroppers while main-
taining access cost optimality of code conversions. We also
presented explicit construction of optimal secure convertible
codes meeting these bounds.

These results establish a foundation for designing secure and
efficient convertible codes. This work opens up several avenues
for future work. For example, the notion of secrecy can be
expanded for convertible codes in the bandwidth cost model.
Since bandwidth-optimal convertible codes are constructed
using access-optimal convertible codes, a natural follow-up to
this work would be to see if our construction retains secrecy
and reaches bandwidth secrecy capacity.
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