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Abstract—Locally Decodable Codes (LDCs) are error correct-
ing codes that admit efficient decoding of individual message
symbols without decoding the entire message. Unfortunately,
known LDC constructions offer a sub-optimal trade-off between
rate, error tolerance and locality, the number of queries that the
decoder must make to the received codeword ỹ to recovered
a particular symbol from the original message x, even in
relaxed settings where the encoder/decoder share randomness
or where the channel is resource bounded. We initiate the study
of Amortized Locally Decodable Codes where the local decoder
wants to recover multiple symbols of the original message x and
the total number of queries to the received codeword ỹ can be
amortized by the total number of message symbols recovered.
We demonstrate that amortization allows us to overcome prior
barriers and impossibility results. We first demonstrate that the
Hadamard code achieves amortized locality below 2 — a result
that is known to be impossible without amortization. Second, we
study amortized locally decodable codes in cryptographic settings
where the sender and receiver share a secret key or where the
channel is resource-bounded and where the decoder wants to
recover a consecutive subset of message symbols [L,R]. In these
settings we show that it is possible to achieve a trifecta: constant
rate, error tolerance and constant amortized locality.

I. INTRODUCTION

Locally Decodable Codes (LDCs) are error correcting codes
that admit fast single-symbol decodability after making a small
number of queries to the received (possibly corrupted) code-
word ỹ. In particular, an (n, k)-code over an alphabet Σ is an
(ℓ, δ, ε)-LDC if there exists a pair of sender/receiver algorithms
Enc : Σk → Σn encoding messages of length k to codewords
of length n, and Decỹ : [k]→ Σ decoding any requested single
message index i ∈ [k] where [k] := {1, 2, . . . , k}. We require
that for all messages x and received word ỹ, the decoder
makes at most ℓ queries to ỹ and if the hamming distance
d(Enc(x), ỹ) ≤ δn i.e the error caused by an adversarial
channel is at most δn, we require that the decoder is correct
with probability at least 1−ε i.e Pr[Decỹ(i) = xi] ≥ 1−ε. The
main parameters of interest in LDCs are the rate R := k/n,
locality ℓ, and error-rate tolerance δ. For instance, LDC s can
be used to store files, where we want the rate to be small to
limit storage overhead, the error-tolerance to be high for fault
tolerance, and locality to be low for ultra-efficient recovery of
any portion of the file.

The trade-offs between rate, locality, and error tolerance
within LDCs for (worst-case) classical errors have been exten-
sively studied yet achievable parameters remain sub-optimal
and undesirable. Ideally, we would like an LDC which achieves

constant rate, constant locality, and constant error-rate toler-
ance simultaneously. However, any LDC with constant locality
ℓ ≥ 2 or constant error tolerance δ > 0 must have at least
non-linear rate [1], where the best known constructions (e.g
Hadamard and matching vector codes) have super-polynomial
rate [2]. In particular, for locality ℓ = 2, we have constructions,
but at the same time, any construction must have exponential
rate [2]–[5]. Katz and Trevisan show further that there do
not exist LDC for ℓ < 2 even when the rate is allowed
to be exponential [1]. It is easy to verify that their result
further extends to settings where the error-rate is δ = o(1)
e.g δ = O(1/n.99). In other words, a local decoder must read
at least twice as much information as requested in the setting
of worst-case errors.

Various relaxations have been introduced to deal with these
undesirable trade-offs for classical LDCs. For example, Ben-
Sasson et al. introduced the notion of a relaxed LDCs [6],
allowing the decoder to reject (output ⊥) instead of outputting
a codeword symbol whenever it detects error. This was further
expanded by Gur et al. to study locally correctable codes
where the decoder returns symbols of the codeword instead of
the message [7]. Another line of work studies LDCs that allow
a sender and receiver to share a secret key that is unknown
to the computationally-bound channel [8]–[10]. Yet another
line of work considers LDCs in settings where the channel
is resource bounded (e.g it cannot evaluate circuits beyond a
particular size/depth) [11].

However, even with these relaxations, the achievable
trade-offs are still sub-optimal. For relaxed locally decod-
able/correctable codes respectively, Ben-Sasson et al. and Gur
et al. are able to achieve LDC / LCC constructions with
constant locality and constant error-tolerance codes, but with
sub-optimal codeword length n = O

(
k1+O(1)/

√
ℓ
)

[6], [12].
Gur et al. also prove that any relaxed LDC must have codeword
length n = Ω

(
k1+c

)
, where c = 1/O

(
ℓ2
)

[13], ruling
out any possibility of having constant rate, constant locality,
and constant error-tolerance. In fact, any relaxed LDC with
constant error tolerance, perfect completeness, and locality
ℓ = 2 must have exponential rate [14]. Moreover, constructions
for relaxed LDCs with constant error-rate tolerance, constant
rate, and locality ℓ = O(polylog(k)) are unknown. While these
parameters are possible in the shared-cryptographic-key [8]–
[10] and resource-bounded-channel settings [11], [15], there
are no constant rate, constant error-rate tolerance, constant



locality constructions.
Traditionally, in LDC literature, the decoder is tasked with

recovering the symbol or bit at a single index. However, most
practical applications desire the recovery of a much larger
portion of the message. For example, the local decoder may
want to recover the symbol xi for every index i ∈ S for some
set S ⊆ [k]. The natural and naive way to accomplish this task
would be to run a local decoder |S| times separately for each
i ∈ S, but the total query complexity will be ℓ|S|. In this paper,
we ask the following natural question: is it possible to improve
the total query complexity beyond that of the naive solution
by designing a decoder that attempts to decode all requested
symbols in one run, amortizing the number of queries?

Our Contributions: We initiate the study of amortized lo-
cally decodable codes which seek to reduce query complexity
by amortizing the local decoding process. Given a set S ⊆ [k],
the local decoding algorithm DecỸ (S) should output {xi}i∈S

where the amortized query complexity α is given by the total
number of queries made by the decoder ℓ divided by the total
number of message symbols recovered i.e., α = ℓ/|S|.

We first show that the Hadamard code [2] can achieve
amortized locality α < 2. In fact, if the the error-rate is
δ = o(1) then the amortized locality approaches 1. This
stands in stark contrast to the impossibility results of Katz
and Trevisan who proved that, without amortization, any LDC
must have ℓ ≥ 2 even if δ = o(1).

Second, we study amortized locally decodable codes in
cryptographic settings where the sender and receiver share a
secret key. We show that when the decoder wants to recover
a consecutive subset of bits [L,R] ⊂ [k] that it is possible to
achieve constant rate, constant error tolerance and constant
amortized locality. To the best of our knowledge this is the first
construction which achieves all three goals simultaneously,
even in the setting where the sender/receiver share a secret
key.

Finally, we can apply the framework of [11], [15], [16] to
remove the assumption that the sender and receiver share a
secret key as long as the channel is resource bounded and is
unable to solve cryptographic puzzles. As Blocki et al. [11]
argued, resource bounded channels can plausibly capture any
error pattern that arises naturally, that is, real-world channels
are resource bounded. For example, suppose that A denotes
a randomized algorithm that models the error pattern of
our channel. If the channel has small latency then we can
reasonably assume that the algorithm A must have low-depth
— there may be many computational steps if the algorithm
A is parallel, but the depth of the computation is bounded.
This means that a low-latency channel would be incapable of
solving time-lock puzzle [17] — cryptographic puzzles that
are solvable in t sequential computation steps, but cannot
be solved in o(t) time by any parallel algorithm running in
polynomial time. One can also design cryptographic puzzles
that are space-hard meaning that they cannot be solved by
any probabilistic polynomial time algorithm using space o(s),
but can be solved easily using space s. Additionally, other
categories of resource-bounded cryptographic puzzles exist,

such as memory-hard [15], space-hard puzzles, which impose
constraints on time-space complexity and space complexity
respectively. Ameri et al. [15] showed how to use crypto-
graphic puzzles and secret key LDCs to construct resource-
bounded LDCs with constant rate, constant error tolerance,
but their locality is O(polylogk). We demonstrate that this
construction achieves amortized locality O(1) if we use our
amortizable secret key LDC.

II. AMORTIZED LOCALITY

We provide the first formalization of amortized locally
decodable codes. We say two strings g and h of the same
length are δ-close if g has hamming distance at most δ|g|
from h.

Definition 1: A (n, k)-code C is a (α, κ, δ, ϵ)-amortizeable
LDC (aLDC) if there exists an algorithm Dec such that for
every x ∈ Σk, ỹ ∈ Σn such that ỹ is δ-close to C(x), and
every subset Q ⊆ [k] with |Q| ≥ κ we have

Pr[Decỹ(Q) = {xi : i ∈ Q}] ≥ 1− ε

and Decỹ makes at most α|Q| queries to ỹ.
An (α, κ, δ, ε)-aLDC permits that the decoder make up to |Q|α
total queries when attempting to decode the target symbols in
the set Q. The amortized number of queries per symbol is just
α, but because the decoder may make up to |Q|α queries in
total, it may be possible to circumvent classical barriers and
impossibility results.

As a first motivation for aLDCs we first consider an impossi-
bility result of Katz and Trevisan [1] who proved that any LDC
must have locality ℓ ≥ 2. In particular, they proved that for any
(1, δ, ϵ)-LDC we have k ≤ log |Σ|

δ(1−H(1/2+ε)) where H(·) is the
entropy function in base |Σ|. Even if we set the error-tolerance
to δ = 1/

√
k, so that δ = o(1), we still have the constraint

that
√
k ≤ log |Σ|

1−H(1/2+ϵ) . Thus, it is impossible to construct
a (1, δ, ϵ)-LDC which supports arbitrarily long messages in
Σk. It follows that any LDC construction that supports long
messages must have locality ℓ ≥ 2. We show that it is possible
to break this barrier by amortizing the decoding costs across
multiple queries and achieve amortized locality 1 + O(δ/ϵ).
Note that if ϵ is a constant and δ = o(1), the amortized locality
is 1 + o(1), that is, the amortized locality approaches 1. In
fact, we show that the Hadamard code already achieves these
properties [18] — see Theorem 2.

The Hadamard code encodes binary messages x ∈ {0, 1}k
of length k to binary codewords y of length 2k, where
each codeword bit corresponds to a XOR of message bit
subsets, yS := ⊕i∈Sxi,∀S ⊆ [k]. More precisely, Enc(x) =
⟨yS⟩S⊆[k] ∈ {0, 1}2

k

where yS := ⊕i∈Sxi. We show that
by extending a simple idea from a traditional single bit local
decoder, we can have amortize beyond what is possible for
traditional locality.

A simple decoder achieving 2-locality for Hadamard codes
decodes any message bit i by selecting a random subset S ⊆
[k], computing the subset Si := S∆{i} (∆ denotes symmetric-
difference), querying the received codeword ỹ at the indices
corresponding to S and Si to obtaining ỹS and ỹSi

and then



outputting ỹS⊕ỹSi
. If the error-rate is set to δ, then by a union

bound, with probability at least 1− 2δ we have ỹS = yS and
ỹSi

= ySi
i.e., both queried bits are correct. If both queried

bits are correct, then the decoder will succeed as ỹS ⊕ ỹSi
=

yS ⊕ ySi
= xi.

If we want to recover multiple message bits, then we can
instead pick a random set S and then query to obtain ỹS and
ỹSj

for all j ∈ Q. The total number of queries will be |Q|+1
so the amortized locality is just 1 + 1/|Q|. By union bounds
we will have ỹS = yS and ỹSj

= ySj
for all j ∈ Q with

probability at least 1− δ(|Q|+1). These observations lead to
Theorem 2.

Theorem 2: For any k, δ, κ > 0, the Hadamard code is a
(2k, k)-code that is also a

(
κ+1
κ , κ, δ, ε

)
-aLDC, where ε ≥

(κ+ 1)δ.

For example, if ε ≤ 1
3 and δ ≤ 1

9 then we have
(
3
2 , 2, δ, ε

)
-

aLDC. In fact, if δ = o(1), then we have an aLDC with
amortized locality α → 1 as we can set κ + 1 = ϵ/δ so
that κ→∞. This is in stark contrast to the result of Katz and
Trevisan, which state that (without amortization) no LDCwith
locality ℓ < 2 exists even when δ = o(1).

III. PRIVATE LOCALLY DECODABLE CODES

In the previous section we saw how amortization allowed us
to push past the locality ℓ = 2 barrier and achieve amortized
locality α < 2 with constant error-tolerance, The primary
downside to the Hadamard construction is that the rate R is
exponential. Ideally, we want a construction with constant rate,
constant error tolerance and constant amortized locality. It re-
mains an open question whether or not this goal is achievable.
As an initial step we show that the goal is achievable in relaxed
settings where the sender and receiver share randomness or
where the channel is computationally bounded. In this section
we will also make the natural assumption that the decoder
wants to recover a consecutive portion of the original message
i.e., Q = [L,R] = {L,L+ 1, . . . , R} ⊆ [k].

In settings where the sender and receiver share randomness
(e.g., cryptographic keys) or where the channel is resource-
bounded we can slightly relax the correctness condition for
an aLDC. Recall that we previously required the decoder
Decỹ succeed with probability at least 1− ϵ for any corrupted
codeword ỹ that is sufficiently close to the original codeword
y. In relaxed versions of the definition, it is acceptable if there
exists corrupted codewords ỹ that fool the decoder and are
close to the original codeword, as long as it is computationally
infeasible for an adversarial, but resource-bounded channel to
find such a corruption with high probability. This motivates
definition 3.

Let ← denote a probabilistic assignment where $← empha-
sizes a uniformly random assignment.

Definition 3: Let λ be the security parameter. A triple of
probabilistic polynomial time algorithms (Gen,Enc,Dec) is a
private (α, κ, δ, ϵ, q)-amortizeable LDC (paLDC) if

• for all keys sk ∈ Range(Gen(1λ)) the pair (Encsk,Decsk)
is an (n, k)-code, and

• for all probabilistic polynomial time algorithms A there
is a negligible function µ such that

Pr[paLDC-Sec-Game(A, λ, δ, κ, q) = 1] ≤ µ(λ),

where the probability is taken over the randomness
of A,Gen, and paLDC-Sec-Game. The experiment
paLDC-Sec-Game is defined as follows:

paLDC-Sec-Game(A, λ, δ, κ, q)

The challenger generates secret key sk ← Gen(1λ). For
q rounds, on iteration h, the challenger and adversary A
interact as follows:

1) The adversary A chooses a message x(h) ∈ {0, 1}k
and sends it to the challenger.

2) The challenger sends y(h) ← Enc(sk, x(h)) to the
adversary.

3) The adversary outputs ỹ(h) ∈ {0, 1}n with ham-
ming distance at most δn from y(h).

4) If there exists L(h), R(h) ∈ [k] such that R(h) −
L(h) + 1 ≥ κ and

Pr
[
Decỹ

(h)

sk (L(h), R(h)) ̸= x
(h)
L · · ·x

(h)
R

]
> ε(λ)

such that Decỹ
(h)

sk (.) makes at most (R − L+ 1)α
queries to ỹ, then this experiment outputs 1.

If the experiment did not output 1 on any iteration h,
then output 0.

A. One-Time paLDC

Our first paLDC construction will be based on the private-
key construction of Ostrovsky et al. [19]. The secret key in
our scheme will be a random permutation π and a one-time
pad R. To encode the message x, first split it into B equal-
sized blocks of size a = ω(log λ), where x = w1 ◦ . . .wB

(◦ is the concatenation function). Encode each block wj as
w′

j = C(wj), where C is a code with a constant rate R and
constant error-tolerance δ. Form the encoded message as y′ =
w′

1 ◦ · · · ◦ w′
B , where |y|/|x| = 1/R. Note that we cannot

just output y′ without assuming sub-constant error-tolerance
because otherwise, an adversarial channel can just choose to
corrupt an entire block w′

j . To remedy this, we apply our
secret random permutation π and the one-time pad R to output
y = π(y′⊕R). Since the channel is computationally bounded,
the errors it causes is effectively random. If the overall error
tolerance is a constant dependent on δ, then each block will
have at most δn errors with high probability (see [19] for
details).

Thus, our local decoder will simply recover its requested
message symbols by recovering the corresponding message
blocks. That is, if block wj is requested, then we undo the
permutation and one-time pad to obtain the encoded block
w′

j and subsequently decode it. More specifically, for each
index jr of w′

j in y′, we obtain the corresponding index
in y as π(jr). In summary, this code achieves constant rate,



constant error-tolerance, and constant amortized locality with
parameters summarized in the following theorem.

Theorem 4: Suppose code C has constant rate R and
constant error-tolerance. Then, the construction above is a
(2/R, ω(log λ), O(1), O(1), 1)-paLDC.

The primary limitation to the above construction is that the
security is only guaranteed after the encoder sends a single
(q = 1) message to the decoder. If the encoder has multiple
messages to send, then they would need to use a separate
permutation πi and a one-time pad Ri in every round i ≤ q.
Generating and secretly sharing randomness for each message
is costly and undesirable; instead, we propose an alternate
where the secret key may be used polynomial many times.

B. Multi-Round paLDC

We present a polynomial round (q = poly(λ)) paLDC
with constant rate, constant error rate tolerance, and constant
amortized locality that matches the one-time construction
without requiring multiple secret keys. Our primary technical
ingredient is a special type of code that we call a robust secret
encryption (RSE). Intuitively, we want a code with the property
that any computationally bounded adversary who does not
have the secret key for the scheme cannot distinguish the
encoding of a random message from a random string. This
allows us to embed fresh randomness in such a way that the
randomness is effectively hidden from an attacker who does
not have the secret key.

Formally, the definition of a RSE is given in definition 5.
Intuitively, the RSE game captures the property that a PPT
attacker cannot distinguish the encoding of a random message
from a truly random string even if the attacker is given many
samples. Recent work [20] yields an efficient construction
(constant rate/error tolerance) of RSE from the Learning Parity
with Noise (LPN) assumption — a standard widely accepted
assumption in the field of cryptography.

Definition 5: A (n, k, δ)-Robust Secret Encryption (RSE)
is a tuple of probabilistic polynomial time algorithms
(Gen,Enc,Dec) such that:

• For all keys sk ∈ Range(Gen(1λ)), (Encsk,Decsk) is a
(n, k) code that can tolerate δn errors.

• For any probabilistic polynomial time algorithm A play-
ing the RSE-Game, q ∈ poly(λ), there exists a negligible
function ε such that

∣∣∣∣Pr[RSE-Game(A, λ, q) = 1]− 1

2

∣∣∣∣ < ε(λ),

where the RSE-Game is defined as,

RSE-Game(A, λ, q)

The challenger generates sk← Gen(1λ) and b
$← {0, 1}

then sends A a sequence {Ri}i∈[q], where each Ri is
(identically and independently) generated as follows:

• if b = 0, Ri ← Encsk(r
i) where ri

$← F
k,

• otherwise if b = 1, Ri $← F
n.

A outputs bit b′ ∈ {0, 1}, and if b = b′, the output of
this experiment is 1. Otherwise, the output is 0.

Lastly, we will need a common cryptographic tool known
as the pseudorandom function (prf). Informally, a prf is a
deterministic function f that when instantiated with a secret
key k, is indistinguishable from a random function to a
computationally-bound adversary. We use the prf to essentially
generate a new one-time pad for each message sent, allowing
us to invoke the indistinguishability of the RSE.

Construction 6: Let RSE.(Gen,Enc,Dec) be an (A, a, δ)-
RSE with rate RRSE, and let f : {0, 1}λ × {0, 1}a+lgB →
{0, 1}a be a prf f .

Gen(1λ)

Output sk ← (π,k, sk′) where π
$← SBA, k

$← {0, 1}λ,
and sk′ ← RSE.Gen(1λ).

Enc(sk,x)

Parse (π,k, sk′)← sk.
For each i = 1, . . . , B :

1) Let wi = xia+1 · · ·x(i+1)a.
2) Generate ri

$← {0, 1}a.
3) Let zi = fk(i ◦ ri).
4) Let w′

i = RSE.Encsk′((wi ⊕ zi) ◦ ri).
Let y′ = w′

1 ◦ . . .w′
B and output y ← π(y′).

Decỹsk(L,R)

Parse (π,k, sk′)← sk.
Suppose x[L,R] lies in wi+1 ◦ · · · ◦ wi+ℓ for some

i ∈ [B − ℓ]. For each j = i+ 1, . . . , i+ ℓ:
1) Let j1, . . . , jA be the indices of w′

j in y′.
2) Let w′

j = ỹπ(j1) ◦ · · · ◦ ỹπ(jA) be obtained by
querying ỹ at those A indices.

3) Compute (dj,1 ◦ dj,2)← RSE.Dec(dj)
4) Compute wj = dj,1 ⊕ fk(j ◦ dj,2)

From wi+1, . . . ,wi+ℓ, output bits corresponding to
x[L,R].

Theorem 7: Suppose (GenRSE,EncRSE,DecRSE) is a
(A, a, δRSE)-RSE with rate RRSE = A/a. Then, construction
6 is a

(
2+o(1)
RRSE

, a, δ, ε
)

-paLDC, where when δ < δRSE, ε is



negligible.
Proof: (Sketch [See full version for complete proof [21]])

For any L,R ∈ [k] such that R−L+1 ≥ κ, suppose x[L,R]
lie in blocks ws+1, . . . , wss+ℓ

. Then, ℓ ≤ ⌊R−L+1
a ⌋ + 1.

To recover each of these wj blocks from ỹ, the decoder
accesses the corresponding encrypted block w′

j . Thus, the
decoder accesses ℓA = ℓ × (a+lgB)

RRSE
bits in total. It fol-

lows that α ≤ 2+2 lg B
a

RRSE
where the term 2(logB)/a ∈ o(1)

as we can take a = ω(log λ). We now upper bound
Pr[paLDC-Sec-Game(A, λ, δ, κ, q) = 1] by upper bounding
the the probability of the event BAD =

⋃
i≤q,j≤B BADij where

BADij is the event that in round i block w′
j has more than δRSEA

errors. As long as the event BAD does not occur it is guaranteed
that the local decoder will be successful in all rounds.

We proceed by defining a series of modified games (or hy-
brids), where we argue that the incorrect decoding probability
difference from the original game only differs negligibly.

We define the series of hybrids H0 to H4 as follows: Denote
round by superscript notation. Then,

1) H0: The game is played as-is.
2) H1: Same as H0, except that we update line 3 of the

encoding algorithm to zi
$← {0, 1}A i.e., we replace

each pseudorandom string fk(j◦ri) with a truly random
string Rj

$← {0, 1}A for each block j ∈ [B].
3) H2: Same as H1, except that we update line 4 of the en-

coding algorithm to w′
i = RSE.Encsk′(Rj) where Rj

$←
F

a+lgB instead of w′
i = RSE.Encsk′(wj ⊕Rj) ◦ rij .

4) H3: Same as H2, but we update line 4 of the encoding
algorithm to set wi

$← F
A i.e., replacing RSE.Encsk′

with a uniformly random string.
5) H4: Same as H3, but in each round i we sample a fresh

permutation πi and output y = πi(y
′).

Intuitively, indistinguishability of Hybrids H0 and H1 (resp.
H2 and H3) follows from PRF security (resp. RSE security).
Hybrids H1 and H2 (resp. H3 and H4) are statistically indis-
tinguishable. Thus, it suffices to upper bound the probability of
the event BAD in hybrid H4 where a fresh random permutation
πi is used in each round i.

Since a new permutation πj with a uniformly random mask
R

′′i
j is used in every round j, an adversary’s δAb errors

are uniformly distributed in each block of size A. Thus, the
number of errors for a given block j is hyper-geometric and
by [22], [23], we have

Pr[BADij ] < 2
−2(((δRSE−δ)A)2−1)

A+1

which is negligible with respect to A = a/RRSE as long
δRSE > δ. By applying a union bound over all B blocks and
q rounds, we have that there is an error decoding any block
is negligible.

C. aLDCs for Resource-bounded Channels

Lastly, we present an aLDC for resource-bounded chan-
nels with constant rate, constant amortized locality, and con-
stant error-tolerance by applying the framework developed

by Ameri et al. [15] to eliminate the requirement that the
encoder and decoder have a shared secret key. The framework
of Ameri et al. [15] using two building blocks: a secret key
LDC and cryptographic puzzles. Intuitively, a cryptographic
puzzle consists of two algorithms PuzzGen and PuzzSolve.
PuzzGen(s) is a randomized algorithm that takes as input
a string s and outputs a puzzle Z whose solution is s i.e.,
PuzzSolve(Z) = s. The security requirement is that for any
adversary A ∈ C is a class C of resource bounded algorithms
(e.g., bounded space, bounded computation depth, bounded
computation) cannot solve the puzzle Z. In fact, we require
that for any string s0 and any resource bounded adversary
A ∈ C the adversary A cannot even distinguish between
(Z0, s0, s1) and (Z1, s0, s1) where si is a random string and
Zi = PuzzGen(si) is a randomly generated puzzle whose
corresponding solution is si.

At a high level the encoding algorithm Enc(x) works as
follows: 1) pick a random string r ∈ {0, 1}λ and generate a
cryptographic puzzle Z = PuzzGen(r) whose solution is r. 2)
Use a constant rate error correcting code to obtain an encoding
CZ of this puzzle. 3) Use the random string r to generate the
cryptographic key sk for a secret key LDC (we will use the
amortizeable secret key LDC (paLDC) from Theorem 17). 4)
Use the secret key LDC to encode the message and obtain
c1 = Encsk(x). 5) Define c1Z = CZ and Ci+1

Z = CZ ◦Ci
Z and

find the smallest value r such that Cr
Z is at least as long as

c1. Set c2 = Cr
Z . 6) Output the final codeword C = c1 ◦ c2.

Intuitively, if the channel is resource bounded then the
channel cannot solve the puzzle Z or extract any meaningful
information about the solution r or the secret key sk derived
from it. In contrast, the local decoding algorithm can extract
several (noisy) copies of CZ by querying c2 and decode these
copies to extract Z (most noisy copies of CZ in c2 will still
decode to Z). Then, the decoder, who does not have the same
resource constraints as the channel, can solve the puzzle Z to
obtain r and then extract the secret key sk using r. Finally,
once the decoder has sk it can run the (amortizeable) secret-
key local decoder on c1 to extract the message symbols that
we want.

If we instantiate this construction with a paLDC, then the
amortized locality is nearly the same. The local decoder needs
to make O(λ poly(1/ϵ)) additional queries to c2 to ensure that
we recover the correct puzzle Z with high probability e.g.,
at least 1 − ϵ/2. However, these additional O(λ poly(1/ϵ))
queries can be amortized over the total number of symbols
that are decoded.

We observe that our amortization block size may be made to
be much larger than the key size, adding negligible amortized
locality.

Theorem 8 (Informal): Suppose the channel is resource-
bounded and there exists a cryptographic puzzle. Sup-
pose CP is a (αp, κp, δp, εp, 1)-paLDC. Then, under the
framework of Ameri et al. [15], we can construct a
(αp + o(1), κp, δ, ε)-aLDC, where δ = O(δp) and ε = O(εp).



IV. CONCLUSION

We initiate the study of amortized LDCs as a tool to
overcome prior barriers and impossibility results. We show
that it is possible to design an amortized LDC with amortized
locality α < 2 — overcoming an impossibility result of Katz
and Trevisan for regular LDCs. We also design a secret-key
LDC with constant rate, constant error tolerance, and constant
amortized locality. Finally, under the natural assumption that
the channel is resource bounded, we can use cryptographic
puzzles to eliminate the requirement that the sender/ sender
and obtain LDCs with constant rate, constant error tolerance,
and constant amortized locality.
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APPENDIX

A. Robust Secret Encyption from Code-based Cryptography

Code-based cryptography is a strong candidate for post-
quantum cryptography due to the widely-believed intractability
of code-theoretic problems related to decoding random linear
codes [24], [25]. The most relevant to our work is the average
decoding problem assumption, assuming that on average, it is
hard for any adversary to distinguish between a codeword with
a fixed number of errors and a uniformly random string.

Assumption 9 (Average Decoding Hardness [26]): There
exist functions k = k(λ), and n = n(λ) where k = poly(λ)
and n = θ(k), and n(λ) ≥ k(λ) such that for any probabilistic
polynomial time adversary A playing the ADP-Game, there
exists a negligible function ε such that for any λ > 0,∣∣∣∣Pr[ADP-Game(A, n(λ), k(λ), λ) = 1]− 1

2

∣∣∣∣ < ε(λ),

where the ADP-Game is defined as,

ADP-Game(A, n, k, λ)

Generate x
$← F

k, R
$← F

k×n, e ← F
n of hamming

weight λ, and b
$← {0, 1}. If b = 0, send c̃ = xR + e

to the adversary A. Otherwise, if b = 1, send u
$← F

n.
The adversary outputs bit b′ ∈ {0, 1}, where if b = b′,
the output of this experiment is 1. Otherwise, the output
is 0.

Robert McEliece proposed the first code-based public-key
cryptosystem in 1978 [27]. His construction was based on
binary Goppa codes and the assumption that such codes are
sufficiently indistinguishable from random codes. We state this
assumption more formally by first defining Goppa codes and
the Goppa code distinguishing (GD) game referenced from
previous work.

Definition 10 (Binary Goppa Code [?]): Let g ∈ F2m [x] be
a polynomial of degree deg g ≤ λ and let L = {α1, . . . , αn :
g(αi) ̸= 0} ⊂ F2m be a set of non-zero evaluation points over
g. Then, a (binary) Goppa code C with rate n−mλ

n and error
tolerance λ is defined as

C =

{
c = (c1, . . . , cn) ∈ Fn :

n∑
i=1

ci
z − αi

≡ 0 mod g(z)

}
Definition 11 (Goppa Code Distinguishing (GD) Game

[28]):

GD-Game(A, λ, n,m)

The challenger and adversary A interact as follows:
1) Challenger chooses at random b

$← {0, 1}. If b = 0,
then G is set to be the generator of a random linear
[n, k]-code. Otherwise, G is set to be the generator
of a random [n, k]-Goppa code.

2) G is given to A, who outputs b′ ∈ {0, 1}. If b = b′,
the output of this experiment is 1. Otherwise, the
output is 0.

The claim that Goppa code generator matrices have no struc-
ture discernible from a random matrix has withstood decades
of cryptanalysis and attacks which have yet to disprove this
assumption for general parameters [28]–[31]. We state the

Assumption 12 (Goppa-Random Indistinguishability): There
exist functions m = m(λ), n = n(λ) and k = n(λ)− λm(λ)
where k = poly(λ) and n = θ(k), and n(λ) ≥ k(λ) such that
for for any probabilistic polynomial time adversary A, there
exists a negligible function ε such that∣∣∣∣Pr[GD-Game(A, λ, n,m) = 1]− 1

2

∣∣∣∣ < ε(λ, n,m).

The security of the McEliece cryptosystem is contingent
on Assumptions 9 and 12. The cryptosystem will encode
messages as codewords of a scrambled secret Goppa code with
added noise, where decryption is straightforwardly undoing
the scrambling and recover the message via the Goppa code
decoder. More specifically, the secret key in the McEliece
Cryptosystem is sk = (S,G, P ), where G is the generator of
a chosen Goppa code, P is a column permutation of G, and
S is an invertible message transformation. The public key is
set to be the scrambled generator pk = SGP. The encryption
scheme on input message m, applies the scrambled encoding
(mSGP ) and adds an error vector e with weight proportional
to the security parameter λ. The decryption scheme on input
codeword with errors c̃ = (mSGP ) + e, inverts the column
permutation c̃P−1 = mSG+eP−1 and decodes the resulting
word with the corresponding Goppa code decoder.

We construct a RSE using a similar error-obfuscation cod-
ing scheme. Our RSE construction can be interpreted as a
conversion of the McEliece system to the secret/symmetric
key setting with additional consideration in the amount of
errors added to support the desired RSE error-tolerance. First,
in the secret key setting, message scrambling matrix S and the
permutation matrix P may be omitted. While these matrices
were used to disassociate the public Goppa code used in
encoding and the secret Goppa code used in decoding, this
is unnecessary when the encoder and decoder share the same
secret key. Second, the RSE robustness property requires that
encodings can tolerate a δ fraction of errors. In our code-based
construction, this is naturally achievable by relaxing the weight
of the added error vector e by a δ fraction.

Construction 13:

Gen(1λ)

Set sk ← G, where G ∈ Fk×n be the generator of a
randomly chosen [n, k] Goppa Code (EncGop,DecGop)
tolerant to λ+ δn errors.

Encsk(m)

1) Let z $← F
n, where wt(z) = λ,

2) Output Y ←mG+ z.



Decsk(Ỹ )

1) From (G,P )← sk, compute P−1.
2) Compute X̃ = Ỹ P−1 = (mG̃P + z)P−1 =

mS̃G + ẑ, where ẑ = zP−1. Note that
wt(zP−1) = λ+ δn.

3) Output DecG(X̃), where DecG is the decoding
scheme (e.g Patterson’s algorithm) for the Goppa
code corresponding to G.

Note that the decoding of a Goppa code, in particular Pat-
terson’s algorithm, can be done in polynomial time with the
extended Euclidean algorithm.

Theorem 14: Given Assumptions 9 and 12, Construction 13
is a (n, k, δ)-RSE for any n ≥ k > 0 and constant δ > 0.

Proof: First, the robustness property is achieved by our
encoding algorithm outputting a codeword Y with λ from a
Goppa code that is tolerant to λ+δn errors. Since the channel
can induce at most δn errors, the robustness property follows
dierectly from the error tolerance of the Goppa code.

Next, we show that for any q ∈ poly(λ), all probabilistic
polynomial time adversaries A,∣∣∣∣Pr[RSE-Game(A, λ, q) = 1]− 1

2

∣∣∣∣ < ε(λ).

We proceed by a hybrid argument over the probability of
adversary A winning the RSE-Game. We define the series
of hybrids H0 to H2 as follows:

1) H0: The game is played as-is.
2) H1: Same as H0, except in the key generation algo-

rithm, replace the Goppa generator G to a random code
generator R $← F

k×n.
3) H2: Same as H1, except in encoding algorithm, replace

the output in line 2 with a random word u
$← {0, 1}n.

Hybrid H0 is indistinguishable to hybrid H1 by Goppa-random
indistinguishability in Assumption 12. More specifically, if
hybrids H0 and H1 can be distinguished, then we can build
a distinguisher for the GD-Game by applying the GD-Game
challenge code (either a Goppa code or random code) to
form challenge codewords for the RSE-Game. Note that we
can claim indistinguishability across all q rounds immediately
since the challenge messages are generated independently
per round. Next, hybrid H1 is indistinguishable to H2 by
average decoding hardness, which follows immediately from
the encoding algorithm in hybrid H1, outputting xR+e, where
wt(e) = λ.

In Hybrid H2, the b = 0 and b = 1 cases are perfectly
indistinguishable, and by our hybrid argument, the advantage
of Hybrid H0 is at most the advantage in Hybrid H2 plus
the negligibale advantage of the Hybrid in between. Thus, the
construction satisfies RSE indistinguishability.

B. Detailing the One Time paLDC

Construction 15: Suppose that code C = (EncC ,DecC) is an
(A, a)-code over an alphabet Σ of size q. Let c = log q.

Gen(1λ)

Output sk ← (r, π) ∈ {0, 1}cAB+|π|

Encsk(x)

1) Parse (r, π)← sk.
2) Blocking. Let x = w1 ◦ w2 ◦ · · · ◦ wB where each

ws = x[(s− 1)ca+ 1 : sca] is interpreted as ws ∈
Σa for s = 1, . . . , B. Denote these as the blocks of
x.

3) Block Encoding. Encode each block s as w′
s =

EncC(ws), let x′ = w′
1 ◦ · · · ◦ w′

B .
4) Permute and Mask. Output π(x′)⊕ r.

Decỹsk(L,R)

Parse (r, π)← sk. Let the interval [L,R] of x bits lie in
blocks ws, ws+1, . . . , wss+v

. That is, for all i ∈ [L,R],
there exists u ∈ [v] such that xi is a bit in ws+u. For
each j = s, . . . , s+ v :

1) Unmask. Let j1, . . . , jℓ, where ℓ = cA, be the
indices of the bits corresponding to w′

j . Compute
ih = π(jh) for h = 1, . . . , ℓ. Then compute
w̃′

j = (y[ih]⊕ r[ih])h∈[ℓ].
2) Decode. Apply DecC(w̃

′
j) to obtain w̃j .

From w̃′
s1 , . . . , w̃

′
sv output bits corresponding to interval

[L,R].

Theorem 16: Suppose C has rate RC and error tolerance δC
and a ∈ ω(log λ). Then, Construction 15 is a (2/R, a, δ, 1)-
paLDC when δC > δ.

Proof: For any L,R ≥ 0 such that R−L+1 ≥ κ, x[L,R]
lie in blocks ws, ws+1, . . . , wss+v

, where v ≤ ⌊R−L+1
ca ⌋ + 1.

We will show that our decoding process queries at most 2(R−
L+ 1)/R bits of the codeword i.e we show α ≤ 2/R.

To recover these blocks, the decoder accesses cAv bits and
so,

α ≤ cAv

R− L+ 1

≤
cA

(
⌊R−L+1

ca ⌋+ 1
)

R− L+ 1

≤ 1

R
+

cA

R− L+ 1

≤ 1

R
+

cA

ca
(ca ≤ R− L+ 1)

=
2

R
.

We show that the probability of an incorrect decoding
Pr[paLDC-Sec-Game(A, λ, δ, κ, 1) = 1] is negligible by
upper bounding the the probability of the event BAD =⋃

j≤B BADj where BADj is the event that block w′
j has more

than δCA errors. As long as the event BAD does not occur it



is guaranteed that the local decoder will be successful in all
rounds. By Lipton’s theorem [32], since our encoder applies a
random mask and permutation, errors are added in a uniformly
random manner with probability δ. Thus, the number of errors
for any given block j is hypergeometric(AB, δAB,A) and by
[22], [23] we have

Pr[BADj ] < 2
−2(((δC−δ)cA)2−1)

cA+1 ,

which is negligible for δC < δ. By a union bound over the
total number of blocks, which is bounded by poly(λ), the
probability, that any block fails its decoding is negligible.

C. Full Hybrid Proof of Theorem 17

Theorem 17: Suppose (GenRSE,EncRSE,DecRSE) is a
(A, a, δRSE)-RSE with rate RRSE = A/a. Then, construction
6 is a

(
2+o(1)
RRSE

, a, δ, ε
)

-paLDC, where when δ < δRSE, ε is
negligible.

Proof: For any L,R ∈ [k] such that R − L + 1 ≥ κ,
suppose x[L,R] lie in blocks ws+1, . . . , wss+ℓ

. Then, ℓ ≤
⌊R−L+1

a ⌋ + 1. To recover each of these wj blocks from ỹ,
the decoder accesses the corresponding encrypted block w′

j .
Thus, the decoder accesses ℓA = ℓ× (a+lgB)

RRSE
bits in total and

we have that

α ≤ ℓ(a+ lgB)/(R− L+ 1)

RRSE

≤
(
⌊R−L+1

a ⌋+ 1
)
(a+ lgB)/(R− L+ 1)

RRSE

≤

(
1
a + 1

R−L+1

)
(a+ lgB)

RRSE

≤
2 + 2 lgB

a

RRSE
, (R− L+ 1 ≥ a)

where the term 2(logB)/a ∈ o(1) as a = ω(log λ).
We now upper bound Pr[paLDC-Sec-Game(A, λ, δ, κ, q) =

1] by upper bounding the the probability of the event
BAD =

⋃
i≤q,j≤B BADij where BADij is the event that in round

i block w′
j has more than δRSEA errors. As long as the event

BAD does not occur it is guaranteed that the local decoder
will be successful in all rounds.

We proceed by defining a series of modified games (or Hy-
brids), where we argue that the incorrect decoding probability
difference from the original game only differs negligibly.

We define the series of Hybrids H0 to H4 as follows: Denote
round by superscript notation. Then,

1) H0: The game is played as-is.
2) H1: Same as H0, except that we update line 3 of the

encoding algorithm to zi
$← {0, 1}A i.e., we replace

each pseudorandom string fk(j◦ri) with a truly random
string Rj

$← {0, 1}A for each block j ∈ [B].
3) H2: Same as H1, except that we update line 4 of the en-

coding algorithm to w′
i = RSE.Encsk′(Rj) where Rj

$←
F

a+lgB instead of w′
i = RSE.Encsk′(wj ⊕Rj) ◦ rij .

Hybrid’s Codewords Justification

H0 : {π(RSE.Encsk′ ((wi
j ⊕ fk(.)) ◦ ri

j))j∈[B]}i∈[q] Original

H1 : {π(RSE.Encsk′ ((wi
j ⊕Ri

j) ◦ ri
j))j∈[B]}i∈[q] PRF Indist.

H2 : {π(RSE.Encsk′ (R
′i
j ))j∈[B]}i∈[q] Same Dist.

H3 : {π(R
′′i
j )j∈[B]}i∈[q] RSE Indist.

H4 : {πi(R
′′i
j )j∈[B]}i∈[q] Same Dist.

TABLE I
HYBRID SUMMARY FOR THEOREM 17

4) H3: Same as H2, but we update line 4 of the encoding
algorithm to set wi

$← F
A i.e., replacing RSE.Encsk′

with a uniformly random string.
5) H4: Same as H3, but in each round i we sample a fresh

permutation πi and output y = πi(y
′).

The indistinguishability of Hybrids H0 and H1 follow from
PRF security and negligible collision probability. First, disre-
garding possible collisions, the prf output zj

i = f(i ◦ rji ) is
computationally indistinguishable from a random Ri

j . Other-
wise, a distinguisher for the prf can be constructed from the
distinguisher of these Hybrids. Next, there is added distin-
guishing probability when the same prf input is used across
rounds i.e. when j ◦ rij = j ◦ ri′j for some i ̸= i′ ∈ [q]. Since
the probability of a collision is at most q2/2a, Hybrids H0 and
H1 remain computationally indistinguishable. Hybrids H1 and
H2 are statistically indistinguishable because they are the same
distribution. Hybrids H2 and H3 are computationally indistin-
guishable by the security of RSE. Recall that by the security
property of RSE, a computationally bound adversary cannot
distinguish between polynomial-many random words and RSE
encodings with random inputs. It follows that if Hybrids H2

and H3 were distinguishable, this would contradict the RSE
security property. Lastly, Hybrids H3 and H4 are statistically
indistinguishable since they form the same distribution. Justi-
fication for why each Hybrid is indistinguishable with respect
to decoding error is summarized in the table I.

Thus, it suffices to upper bound the probability of the event
BAD in Hybrid H4 where a fresh random permutation πi is
used in each round i.

Since a new permutation πj with a uniformly random
mask R

′′i
j is used in every round j, an adversary’s δAb

errors are uniformly distributed in each block of size A.
Thus, the number of errors for a given block j is hyper-
geometric(AB, δAB,A), and by [22], [23], we have

Pr[BADij ] < 2
−2(((δRSE−δ)A)2−1)

A+1

which is negligible with respect to A = a/RRSE as long
δRSE > δ. By applying a union bound over all B blocks and
q rounds, we have that there is an error decoding any block
is negligible.

D. Resource-bounded paLDC Construction

Lastly, we present an aLDC for resource-bounded chan-
nels with constant rate, constant amortized locality, and con-



stant error-tolerance by applying the framework developed by
Ameri et al. [15] to eliminate the requirement that the encoder
and decoder have a shared secret key. The framework of Ameri
et al. [15] using three building blocks: a secret key LDC, an
LDC∗, and cryptographic puzzles.

First, we formally introduce LDC∗s, a variation on LDCs
in which the entire message is recovered while making few
queries to the codeword (possibly with errors).

Definition 18 (LDC∗ [11]): A (n, k)-code C = (Enc,Dec)
is an (ℓ, δ, ε)-LDC∗ if for all x ∈ Σk, Decỹ with query access
to word ỹ δ-close to Enc(x),

Pr[Decỹ = x] ≥ (1− ε),

where Decỹ makes at most ℓ queries to ỹ.
Blocki et al. crucially show that an LDC∗ can be constructed
for locality ℓ = O(kpoly(1/ε)) for arbitrarily large n with
constant decoding error. Next, we formally defining crypto-
graphic puzzles ε-hard for algorithms R.

Definition 19 (Puz [15]): A puzzle Puz = (Gen,Sol) is
a (R, ε)-hard puzzle for algorithm class R if there exists a
polynomial t′ such that for all polynomials t > t′ and every
algorithm A ∈ R, there exists λ0 such that for al λ > λ0 and
every s0, s1 ∈ {0, 1}λ, we have∣∣∣∣PrA(Zb, Z1−b, s0, s1) = b]− 1

2

∣∣∣∣ ≤ ε(λ),

where the probability is taken over b
$← {0, 1} and Zi ←

Gen(1λ, t(λ), si) for i ∈ {0, 1}.
Intuitively, a cryptographic puzzle consists of two algorithms
Puz.Gen and Puz.Sol. Puz.Gen(s) is a randomized algorithm
that takes as input a string s and outputs a puzzle Z whose
solution is s i.e., Puz.Gen(Z) = s. The security requirement is
that for any adversary A ∈ R is a class R of resource bounded
algorithms (e.g., bounded space, bounded computation depth,
bounded computation) cannot solve the puzzle Z. In fact,
we require that for any string s0 and any resource bounded
adversary A ∈ R the adversary A cannot even distinguish
between (Z0, s0, s1) and (Z1, s0, s1) where si is a random
string and Zi = Puz.Gen(si) is a randomly generated puzzle
whose corresponding solution is si.

We now modify the aforementioned compiler of Ameri et
al. to take in a paLDC instead of an aLDC and to output
a aLDC instead of a LDC for a resource-bounded channel.
Additionally, we relax the definition of an aLDC to take in a
consecutive range, like in paLDC. This follows naturally from
the use of a paLDC to instantiate our construction. Whether
resource-bounded aLDCs exist for non-consecutive queries is
left as an open question. Note that the codes defined are over
choice of λ values, where the message length is taken to be
any polynomial k ∈ poly(λ).

Construction 20: Let paLDC.(Gen,Enc,Dec) be a paLDC
that is a (nP, kP)-code, let LDC∗.(Enc,Dec) be a LDC∗that
is a (n∗, k∗)-code, and let Puz.(Gen,Sol) be a (R, ε)-hard
puzzle. Let t′ be the polynomial guaranteed by Definition 19.
Then, for any fixed λ ∈ N, we construct an aLDC (Enc,Dec)
as the following algorithms.

Enc(x)

1) Sample random seed s
$← {0, 1}kP .

2) Choose polynomial t > t′ and compute Z ←
Puz.Gen(1λ, t(λ), s) where Z ∈ {0, 1}k∗ .

3) Set Y∗ ← LDC∗.Enc(Z).
4) Set sk ← paLDC.Gen(1λ; s) i.e. we explicitly

instantiate paLDC.Gen with random seed s.
5) Set YP ← paLDC.Encsk(x)
6) Output Y∗ ◦ YP.

DecỸP◦Ỹ∗(L,R)

1) Decode Z ← LDC∗.DecỸ∗ .
2) Compute s← Puz.Sol(Z)
3) Compute sk← paLDC.Gen(1λ; s)

4) Output paLDC.DecỸP

sk (L,R)

Theorem 21: Suppose Construction 20 is instantiated
with an (αP, κP, δP, εP, q)-paLDC, (ℓ∗, δ∗, ε∗)-LDC∗, and a
(R, εPuz)-hard puzzle Puz. Then, Construction 20 is a (n, k)-
code that is a (α, κ, δ, ε)-aLDCwith

n = nP + n∗,

k = kP,

α = αp +
ℓ∗
κP

,

κ = κP,

δ = (1/n)×min{δ∗n∗, δPnP},
ε = ((1− ε∗)εP + 2εPuz)/ε∗,

when the adversarial channel A ∈ R.
Proof: The decoder given L,R ≥ 0 such that R−L+1 ≥

κP, queries the word Ỹ∗ ◦ ỸP in two steps. First, it performs
queries for LDC∗.DecỸ∗ to recover the puzzle Z, and after
solving the puzzle to generate secret key sk, it performs queries
for paLDC.DecỸP

sk (L,R). The total number of queries is at
most ℓ∗ + (R− L+ 1)αP so α can be derived as

α(R−L+ 1) ≤ ℓ∗ + (R−L+ 1)αP =⇒ α ≤ αP + ℓ∗/κP.

Next, the error tolerance δ can be derived as the average
error-tolerance between the LDC∗ and paLDC codewords. The
decoding error follows from the same derivation in the proof
of Theorem 6.8 of [15]. As an overview, given a distinguisher
for the aLDCwith noticeable advantage ε, a distinguisher for
the hard puzzle Puz exists with distinguishing advantage at
least ε× (ε∗(1/kP)− (1−ε∗)εP), hence breaking the security
of Puz.
Explicitly, we can achieve constant decoding error ε, constant
rate R, constant amortized locality α, and constant error-
tolerance δ by using the (one-time) paLDC construction from
Theorem 16 and an LDC∗ with n∗ ∼ nP. Note that n∗ ∼ nP

is necessary for simultaneous optimally constant parameters.



We need n∗ = Ω(nP) for constant error tolerance, and, at
the same time, the rate R = kP/(nP + n∗) is constant for
n∗ = O(nP).


